APPENDICES

“Men who wish to know about the world must

 learn about it in its particular details.”

....Heraclitus

Appendix A - Kinematics


Kinematics refers to the constraints implied by energy and momentum conservation.  Dynamics refers to the appropriate forces that define the detailed particle motion consistent with those constraints.  We confine ourselves here to the kinematics of two body decays of a single particle or two body reactions.


Consider the 2 body reaction a+b  c+d.  The decay of a “particle” of mass 
[image: image1.wmf]s

 into c+d is a special case.  Let us take the “laboratory” frame with b at rest, and make the simplifying assumption that mc  = md = m.  The center of momentum, CM, motion and the mass of the initial 2 body system, 

, follow from the expressions of special relativity, taking a+b as the initial system; 
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A.1

In the CM system, we can view the situation as either 2  2 scattering or as the 2 body “decay” of a system of mass 

.  The scattering angle in the CM frame is 
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q

 as illustrated in Fig. A.1.  Energy and momentum balance requires (if mc = md = m);
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A.2


The Lorentz transformation back to the laboratory frame yields a momentum for the final state particles which depends on the scattering (decay) angle 

.





A.3
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 EMBED Equation.3  [image: image12.wmf]
Fig. A.1:
a)
The CM scattering angle *.  b)  The distribution of the energy of particle c for an isotropic angular distribution in the case where c is light 
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The angular distribution, if isotropic (S wave scattering), 
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 or light secondary particles
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A.4
The minimum secondary particle energy is ~0, in the limit that m is small with respect to 

. The maximum is given by the incident particle energy.


Consider now the solid angle element in the lab and CM (indicated by a * superscript) frames.  The Lorentz transformation, pT = pT*, insures that we only need to consider 
[image: image18.wmf]*

since

,

f

f

q

=

.  We also assume azimuthal isotropy.



[image: image19.wmf](

)

[

]

*

11

1

11

)

/

(

/

tan

)

/

(

cos

f

f

q

d

p

p

d

p

p

d

p

p

d

d

d

d

y

x

=

=

=

W

-


A.5
Using Eq. A.3 we differentiate to find the relationship between 

 and 

.  We give the result only for the case where 

 and 1.
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A.6
In general, relativity implies a “searchlight” effect, throwing the angular distribution forward by factors of .  We show the contours of photons in the laboratory and CM frames in Fig.A.2. The isotropic CM contour is stretched along the direction of motion.
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Fig.A.2 
Contours of momentum of photons in an isotropic decay. The CM contour is spherical, while the lab contour is highly peaked in the forward direction.


 The resulting forward/backward asymmetry for relativistic motion is seen in Compton scattering at higher energies as shown in Fig. A.3.  Part of this effect is purely kinematic, Eq. A.6.
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Fig. A.3:
d/d for Compton scattering, 

, at higher photon energies.  The distortions causing a forward-backward asymmetry, which are partially due to Eq. A.6, are evident.


An example of kinematics is Compton scattering.  The basic equations are (see Section 10):
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A.7
We wish to find the outgoing photon energy 

 in terms of the photon scattering angle, 
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.  Clearly, we try to “remove” the recoil particle.  This is accomplished by placing 

 and 
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 on the right hand side of the equations,
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squaring and subtracting
A.8
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The Compton angular distribution in the laboratory frame is given without proof to be 
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. We recognize the ((/(o)2 factor is being purely kinematic. The relation of 

 to 

 follows from Eq. A.8. 
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A.9

This distribution is shown in Fig. A.3 for 

 = 10 keV, 100 keV and 1000 keV.  The small y limit is the non-relativistic case, 
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 with integral, 
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which is the Thompson result given in Section 10.


The most tedious calculation is this volume is perhaps that for the recoil angle as a function of recoil energy.  The kinematics was shown in Section 5.



[image: image34.wmf]e

m

k

p

p

o

o

+

=

+

+

=

e

e

r

r

r


A.10

We again “remove” the scattered projectile variables by squaring and subtracting as in the case of Compton scattering.
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A.11

Define e = T+m where T is the recoil kinetic energy.  The energy and momentum constraints are then, 

.  We now need to find the recoil momentum k in the terms of the recoil energy.
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A.12

This expression is used in Eq. A.11 and its square to solve for 

 as a function of the masses, the incident particle momentum, and the recoil angle 

.
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A.13

Using the relations 

 and 

 we can find Q as a function of recoil angle 

, the incident particle mass M and velocity
[image: image38.wmf]b

 and the target mass m.
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A.14

This expression is quoted in Section 5.  Clearly Qmax ~ Q 

 or Qmax = 

.  For high energy incident particles, 

 and Qmax 

 or Tmax 

( remember, c = 1 is used so that Tmax ( poc.). 


Consider the scattering of slow neutrons by nuclei, Qmax = 
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, (Eq. A.13), where m = AM.  In that case, 

 and 

, where M is the neutron mass.





A.15

The scattered n has a minimum energy Tmin when the recoil nucleus has a maximum kinetic energy.





A.16


Thus, as intuition suggests, if A  Tmin  To and no energy is lost, while if A  1 (n+p elastic scattering) the neutron can give all its energy to the recoil proton, Tmin  0.  These results are quoted without proof in Section 12.  Recall that in shooting pool, banking off a cushion 
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 means no loss of energy while a head on collision of the cue ball and another ball (A=1) leads to a complete loss of the kinetic energy of the cue ball.


The CM energy squared, s, is a relativistic invariant, being the square “length” of the total four dimensional momentum of a system.  Consider the reaction 
[image: image42.wmf](

)

p

n

p

p

p

®

 for multiple pion production.  The initial state (p at rest) has 
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, ignoring the mass of the light pion.  The “threshold” energy, E( = ETH, occurs at the lab energy where n pions can just be produced.  The minimum s configuration is to have all the final state particles at rest in the CM, or 
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