Appendix B - Quantum Bound States and Scattering Cross Section


The Schroedinger equation in quantum mechanics results from assigning differential operators to momentum and energy.  These operators act on a wave function 

, where 

 describes the probability density of finding a particle.  The kinetic energy T plus the potential energy U is the total energy E.  Note that this expression is non-relativistic, so that E really represents the energy 

.  
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The differential operators are 
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 which have a compact relativistic representation, 
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B.2


The form of the solution for constant energy in 3 dimensions is the product of an angular function (spherical harmonics = 
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) and a radial function, R if the problem is “central force”, where U is a function only of r.
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B.3
The radial wave function for u satisfies a differential equation with terms that can be identified as radial kinetic energy, total energy, central potential energy and centrifugal potential respectively.



[image: image8.wmf](

)

0

2

1

2

2

2

2

2

2

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

-

-

u

r

m

U

E

dr

u

d

m

l

l

h

h


B.4

The solution to this equation is simple in the limits 

 and 

.  In the case 

, the most singular part of the equation is the centrifugal potential, (assuming U is well behaved.)
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B.5
The centrifugal barrier forces the wave function away from the origin, so that only S wave (
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The solution for 

 is dominated by the energy term, since the potential U is assumed to fall as r increases.  We have an oscillatory equation, whose behavior depends on the sign of E.  
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B.6
For E<0 we have bound states, 

 localized, while for E>0 we have scattering states, 

 ~ constant.  Note that both the small r and large r behavior of 

 is “generic”, i.e. independent of the particular central force problem specified by U(r).
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B.7

Consider the hydrogen atom with a radial quantum number n in addition to 
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 and m.  The wave function is assumed to be 
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 times some polynomial which interpolates between the small and large r behavior.  As seen in Fig. B.1, the condition for a standing wave, representing a stable state, requires quantization of the deBroglie wavelength, which implies quantized momentum, and hence energy.
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B.8

The Schroedinger equation for S waves, 
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, assuming that the energy can be minimized with respect to radius in order to find the “ground state”, then becomes (n = 1)
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Fig. B.1:
Relationship of  to a for the case of a standing wave solution for .  The wavelength  is the deBroglie wavelength = h/p.
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B.9
In this case we find the ground state, and using Eq. B.8, infer that higher level states have energies, E ~ p2, that scale as 

.  The “virial theorum” relating T and U holds.
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B.10

Consequently Eo = -T = U/2.  The radius increases with n (not as deeply bound),  since E ~ T ~ p2 the En ~ 1/n2 behavior also indicates looser binding as n increases.  The ionization continuum occurs at n ( ( or E ( o.
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In the case of a general power law potential, U = g2/rd, the radius analogous to Eq. B.9 can be shown by the same technique to be
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B.12

Inserting back into the expression for energy, we find the dependence on m and n.
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The electromagnetic results for d = 1, a ~ n2/g2 m ~ 
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 and En ~ m/n2, are recovered.


The scattering solutions, Eq. B.7, are oscillatory as 

, 
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.  The effect of scattering is to induce a change of phase, or “phase shift”, in the case of elastic scattering. It can be shown that the behavior of the phase shift, 
[image: image24.wmf]l

d

, with angular momentum 
[image: image25.wmf]l

 is that 
[image: image26.wmf]1

2

~

+

l

l

k

d

 which is similar to the behavior of 

 shown in Eq. B.5 and has the same physical cause, centrifugal “repulsion”.  For scattering with absorption we have amplitude A

, elastic cross section 

, and inelastic cross section 
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 defined by the phase shifts.  Absorption is indicated by the existence of an imaginary part of the phase shifts, 
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The outgoing spherical scattered wave is 
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 means that no scattering has occurred.  Since the force is central, angular momentum is conserved, which allows us to sum the scattering amplitude over “partial waves” labeled by 
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B.14

The resulting cross sections are given below.



[image: image34.wmf](

)

(

)

(

)

IN

EL

T

IN

EL

k

k

s

s

s

h

p

s

h

p

s

+

=

-

+

=

-

+

=

å

å

¥

=

¥

=

2

0

2

2

0

2

1

1

2

1

1

2

l

l

l

l

l

l


B.15


In the special case of purely elastic scattering, 
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B.16

Large phase shifts in a partial wave imply a large scattering cross section.


In general we find the phase shifts by matching the incoming and outgoing solutions.  A simple example is a potential well with depth Uo and range a.  The solutions for r<a and r>a can be seen from Eq. B.4.  We consider only S waves (
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, are excited, and S waves will dominate.  This situation typically obtains when the incoming particle wavelength, (, is much larger than the size of the scattering system, ka ~ a/ << 1. 
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The oscillatory scattering states are taken to be cos(kr) and sin(kr). We expand in that complete set to find the solutions u for r<a and r>a.
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The exterior wave is a mixture of sin and cos characterized by a phase shift 

.  The interior wave must vanish at the origin (Eq. B.5) and has scattering amplitude A.  The solution is obtained by matching u and du/dr at the r = a boundary.
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Consider the S wave elastic cross section, 

.  If the well is “shallow” with respect to the energy of the incident wave, Uo/<<1, then K~k and
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B.20

There are two limits depending on the size of ka.  If ka>>1 the geometric cross section is obtained with 
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 ~ ka. For ka << 1 the cross section is reduced with respect to the geometric cross section by a factor ~ (ka)4.
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Let us now connect the wave equation for 

 to a fictitious “index of refraction”.  Consider Eq. B.2 for energy eigenstates, or states of constant E, in 1 dimension, 
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Thus the wave function of a free particle, U(x) = 0, is a plane wave. An interacting particle moves in a medium with an index of refraction. 
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The energy E is a constant of the motion, by assumption.


In this fashion we can freely adopt the classical results of electromagnetic reflection to quantum mechanics.  For example, consider photoelectric emission in metals.  Inside the metal the electrons are bound by a negative potential energy, U(x) = -Uo.  The emitted electron wave inside the metal is reflected when it encounters the interface to vacuum, U(x) = 0.  We could match boundary conditions and solve the quantum mechanical problem.  The wave functions are
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The wave vectors in the 2 regions, x < 0 and x > 0 are
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Matching 
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 and 
[image: image55.wmf]x

¶

Y

¶

/

 at x = 0, we obtain the conditions.
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B.26

In Eq. B.27 R is the reflection coefficient, the ratio of the intensity, 

, of the reflected wave to the incident wave. Removing a from Eqs. B.26 we find b = c(k’+k)/(k’-k).
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Note that we could also get this result by appealing to the classical result for optical reflection at a medium-vacuum interface, 
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.  Note that this result also applies to waves traveling down a coaxial cable of impedance Z1 striking another cable of impedance Z2 (see Appendix D).  Clearly, the same wave equation describes many different physical applications.
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