Appendix D - Connecting Cables


A key element of a complete detector system of great practical importance is the cables which are used to connect the parts together electrically.  High speed operation dictates that a simple single wire connecting point to point is totally inadequate.  For that reason a “transmission line” environment should be provided for the signals.  That environment can be provided by patterns etched on printed circuit boards, by twin leads (e.g. TV antenna lead, with 75

 impedance) or by coaxial cable (e.g. RG58 “Ethernet” cable with 50

 impedance).   Coaxial cable is the method of choice, because it provides the best shielding against outside interference and thus the best noise immunity.


The geometry of some transmission line types is shown in Fig. D.1.  In the coaxial case the characteristic impedance, Zo, of the line is.
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D.1

.  The impedance of the parallel wire configuration, Fig. D1, is twice that of the coaxial configuration for the same a and b. 
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Fig. D.1:  Parallel wire and coaxial transmission lines.

We can think of the cable as the continuum limit of a discrete series of capacitors and inductors with impedance ZC ~ 1/iC, ZL ~ iL and with the series-parallel combination having 
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 independent of frequency.  Note that the “impedance of free space” (MKS) sets the scale for Z up to dielectric constants and geometric factors and is given in Eq. D.2
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D.2

The velocity of electromagnetic wave propagation is derived in Section 3.  Typically, in coaxial lines solid dielectrics are used which have 

 or v ~ 0.67c = (4.6 nsec/m)-1.  The dependence on the geometry is weak (logarithmic).  Typical values for the impedance of coaxial cables are 

.  Some examples are given in Table D.1.
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D.3
Table D.1

Some Examples of Coaxial Cables

Type
Zo(

)
a(cm)


 (nsec)

(10 m)

RG 58-U
50
0.147
0.2

RG 8-U
52
0.362
0.038


A pulse propagating down a transmission line of impedance Z1 which encounters a region of impedance Z2 suffers a reflection with coefficient R for the power or (R for the fields.  The formalism is perhaps familiar from analogous situations in optics and quantum mechanics, with 

 as quoted in Appendix B.
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D.4

If the impedance is matched (Fig. D.2), there is no reflection.  If a short circuit, Z2 = 0, appears, then R = -1 and the reflected pulse is inverted.  If an open circuit appears, Z2  ,

R = 1, and the reflected pulse is non-inverted.  Proper termination of a cable is shown in Fig. D.2.
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Fig. D.2:
Layout for correct driving of a cable with characteristic impedance Zo.


For coaxial cable signal power is lost due to field penetration into the conductor by the skin depth effect caused by finite conductor resistance as discussed in Section 3.  The capacity per unit length and inductance per unit length of the coaxial cable are C and L.
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D.5
The expression for 

 is derived in the body of the text in the Section on wire chambers.  The capacity per unit length has a scale set by the vacuum, 

.  A 1m length of typical cable represents a ~ 30 pF capacitive load which must be charged up by a buffer driver in order to drive the signal down the cable. Using Eq. D.5 and Eq. D.2 we can now retroactively derive Eq. D.1.


The cable losses are defined by a resistance per unit length, R, which depends on the resistivity, 

, of the conductor and the skin depth, 

, and hence the frequency.  The cable is not a perfect lossless transmission line.
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D.6
Clearly, small cables are desirable for reasons of cost and “hermiticity” or the maximum coverage by active detectors, but the 1/a dependence of R means that small cables are lossy and hence cannot transmit high speed signals.  Note that high speeds are preferentially lost since R increases as  increases ( decreases).  Some compromises are usually made, of necessity.


For example, 

 for copper.  Assuming, 0.1 cm = a, center conductor, 
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.  The skin depth in copper is derived in Section 3 to be, 
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.  Thus, the resistance/unit length is roughly 
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.  The resistance of a 10 m cable to transmitting a frequency of 1 GHz is found to be  ~ 3 .  


The measured dependence of cable loss as a function of frequency and length for several common coaxial cables is shown in Fig. D.3. The expected 1/(( behavior is clearly displayed.
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Fig. D.3 a) Contours of constant loss for cables as a function of frequency and length.

              b) Waveforms at the driver and receiver end of 95 feet of RG58/U cable.


The rise time of the cable to a step function, containing all frequencies, is defined to be 

, which is ~ R C times the square of the cable length (see Table D.1).  For 10 m of cable, 

 (for 1 GHz) is ~ 3 (300 pF) ~ 0.9 nsec.  Manufacturers quotes for rise times of RG-58 (a = 0.15 cm) and RG-8 (0.36 cm) are 0.2 nsec and 0.038 nsec for 10m respectively confirming this rough estimate and showing the fall of 

 with the conductor size, a.  Note that the degradation of pulse shape fidelity goes as the square of the cable length.  This argues to make the cable runs as short as possible. Oscilloscope traces of a pulse train at the driver and receiver ends (see Fig. D.2) of a 95-foot cable are shown in Fig. D.3b. Note the ~ 2 nsec rise and fall times at the receiving end.


Note that we have simply ignored the “quantized” nature of the waves propagating down the cable.  The reason we can do this is that the minimum times to be considered are limited by the resistive cable losses to be ~

 ~1 nsec or 

 ~ 1 GHz.  At that frequency the wavelength is still 30 cm which is much larger than the transverse size of the cables.  We are not yet operating in the high frequency region where real r.f. techniques are required, nor will we explore r.f. “plumbing”.


As an aside, if you look at a microwave oven in your home, there is a metal mesh screen embedded in the window.  The metal will absorb electromagnetic waves with wavelengths >> the distance from metal to metal.  The size of the grid is ~1 mm, which is quite sufficient to block the wavelengths of the microwaves and thus protect the chef from being cooked by his own oven.


In the practical design of detectors cables are actually quite crucial and the proper cable choice is of some importance.  The cables must transmit the signals of the data well and with low noise.  In a high radiation field, they must often also be small so as not to provide a leakage path to sensitive electronics components.  A good working knowledge of the properties of cables is a useful tool in the kit of the detector designer.
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