Appendix E - The Emission of Cerenkov Radiation


A truly complete derivation is well beyond the scope of this text. Nevertheless, it is useful to move beyond the heuristic motivations used in Section 3. In particular, we can relate radiation in general, Section 10, to the Cerenkov special case, Section 3. The expressions for the Lienard-Wiechert formulae relating a moving charge to the relativistically correct scalar and vector potentials are given here without proof.  The static solutions for the electric and magnetic potentials are modified by a factor 

 evaluated at the “retarded time” t
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E.1
The nonrelativistic limit, c 
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 as expected.  The definitions of r, t, and tare given in Fig. E.1.
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Fig. E.1:
Definition of vectors at the retarded position, the observation point and the “virtual present position”.


We can then use the relationship, Table 6.1, between potentials and fields, 
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, to derive that the radiation fields, those which go as 

, are those given in Eqs. E.2 (See J.D. Jackson, Classical Electrodynamics, Ref. 2.1).  Physically 
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 is the “virtual present position” as shown in Fig. E.1.
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E.2
At low velocity we find the familiar Larmour pattern, that of an electric dipole of moment = 
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.  In Section 10 we simply applied the dimensionless substitution (ar/c2) to the static solutions in order to make the radiative solutions plausible.  The non-relativistic, 
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E.3
The general result for the power, 
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 was “derived” in Section 10 using the correct relativistic expression for acceleration and writing P as a Lorentz invariant.


The expressions for the fields are used to find the energy radiated into solid angle element 

 per unit frequency interval 

 where frequency is defined using the observer’s clocks, t, (see Fig. E.1).  Assuming that there is only a finite duration of the acceleration, the radiated energy can be related to the Fourier transform of the potential, 
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.  The non-relativistic limit is again familiar (see Section 10). Using Eq. E.2 for the electric fields,
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E.4

If the observation point is very far away, then during the finite acceleration time, 

.  If the observation point is labeled by 
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 from some arbitrary origin, as is the source point 
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, then during emission of the radiation, r can be approximated as 
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.  The expression for the radiated energy then simplifies considerably in terms of the time 

 at emission, 
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E.5
Thus, we have found an expression for the radiated energy as a function of observed frequency 

 at location 
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 if the trajectory, 
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Since we can, tediously, show that 
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, we can integrate once by parts to obtain.
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E.6

We can now heuristically apply these general formulae to the case of uniform charged particle motion in a dielectric medium.  The interaction with the medium is a collective phenomenon, so the use of an overall index of refraction 

 is sufficient.  The effective speed is reduced, 

, as is the charge (due to polarization of the medium), 

.  Making these substitutions 

, and assuming uniform motion, 
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E.7

Note that the expression which is squared is simply a delta function in the variable 
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 (unique momentum) is 
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E.8

A problem arises when the integral yields a 

 function because we have assumed an infinitely long time for radiation.  For a finite radiator length we would obtain a diffraction pattern peaked at 

, and the size of I(() would be proportional to the time interval over which radiation is emitted.  Thus the energy radiated per unit path length, 

, is expected to be a constant.  The number of emitted photons, N, per unit frequency is then very simply expressed.
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E.9

Summarizing, the radiated power is related to the square of the Fourier transform of the fields.  The exp(it) factor in the transform, given retardation, t = tx - 
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.  The integral is a delta function in 
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 leading to the Cerenkov result, albeit in a formal fashion most properly relegated to this Appendix.  Further details are to be found in the references quoted at the end of Section 3.
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