Appendix F - Motion in a Constant Magnetic Field


The Lorentz force equation (MKS) is 
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.  It defines the dynamics of the problem for motion in any magnetic field. Since 
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, the magnetic force does no work on the particle, and hence 
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.  The arc length s can be used to parametrise the path instead of clock time t, and the general equation of motion is;
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F.1
Unit vectors are indicated by the ^ symbol.  The instantaneous radius of curvature is indicated by the symbol 

. We have recast the dynamics as an equation for the change of the direction cosines of the particle trajectory. Instantaneously, the momentum rotates about the magnetic field direction in a circle of radius (.


For the remainder of this Appendix, we specialize to a uniform field, 
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, along the z axis.  Note that in the text x is usually considered to be along the direction of motion, e.g. dEI/dx. We can always simply permute the axes if another Cartesian coordinate system is desired.  Since there is no force along the z axis, we can integrate Eq. F.1 twice.
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F.2
Initial values are indicated by the o subscript.  Note that initial means when clocks are started, at t = s = 0.


The forces act in the x and y directions.  The equations of motion, from Eq. F.1 are
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F.3
We first differentiate again in order to decouple the x and y equations of motion.
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F.4
The form of the equations indicates harmonic motion of 

 and 

.  The solutions are therefore sinusoidal.  We expand in the complete set, sin

 and cos

, and impose the initial conditions, 
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F.5
Identifying 
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 = 0 and 
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 we can easily show that Eq. F.5 satisfies Eq. F.4 by substitution.  Physically 

 is the angle through which the momentum vector is rotated perpendicular to 

 when the particle moves a total distance s in the field in a circle of radius (.


Having found the first integral, we integrate again to find the positions.  The integral of Eq. F.5, 
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 at 

, is;
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F.6

Having found the trajectory in terms of path length, we can also find alternative forms which eliminate explicit reference to the parameter s.  Squaring Eq. F.6 we get the circular part of the trajectory perpendicular to the magnetic field direction, so that we can find x knowing y and the initial conditions.  This formulation is useful for evaluating trajectories at a fixed x or y boundary.  Using Eq. F.5 and F.6 we first find x in terms of 
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F.7

Squaring F.7 and adding we remove the parametric dependence on s (or 
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) and find an expression for the trajectory.
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F.8

This is the equation of a circle of radius (T in the (x,y) plane.

Manipulating Eq. F.6 we can, alternatively, solve for the “bend angle” 

 as a function of points on the trajectory x and y.
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F.9

The momentum parallel to 

 is constant and the magnitude of the momentum perpendicular to 

, pT, is constant.  If point (x,y) on the trajectory is known, then  can be found.  From  = s/ and Eq. F.2 the point z can also be found.


It is often more convenient to use cylindrical coordinates because the basic physics is clearly cylindrically symmetric.  For example, a solenoid has cylindrical symmetry and these coordinates are obviously the ones of choice particularly in the case when the detectors are constructed with that symmetry.  In the simplifying case 

, with 

 labeling the position at radius r, when 

, 

 is substituted into Eq. F.7 we find that
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F.10
The angle 

 is the initial direction of the momentum vector perpendicular to 

.  As shown in Fig. F.1, if 

 then the track will curl up and never reach radius r.  
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Fig. F.1:
The existence of a minimum transverse momentum required for particles to pass outside a radius r.

Thus particles with transverse momentum 

 do not reach a radius r.  These low momentum tracks simply rotate in azimuth and drift down the solenoid along the 

 direction.


In order to find the exit vector we use Eq. F.7 to find 

, the label for the exit angle.  The geometry is given in the body of the text.  (See Section 7.)
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F.11

The solutions given in the Appendix are exact in the case of a uniform field.  Since any field can be locally taken to be uniform, a solution for an arbitrary field can be achieved numerically by pasting together a succession of these solutions.  This technique has many applications in numerical recipes for solving much more complex problems.
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