Appendix J - Statistics Introduction


There has been no real explanation of statistics in the body of the text.  However, we have freely quoted “folding errors in quadrature”, “stochastic error” and other concepts.  In order to give some minimal background, we expand a bit on the basic concepts of statistical error.  References are provided at the end of the text (Section 13).  The treatment here is completely without rigor.


Consider first a discrete series of N measurements of a quantity y, yi, i = 1, ... N.  The mean and mean square deviation from the mean of those measurements are 

 and 

.
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J.1

In the limit where 

 the distribution of results y approaches a continuous distribution function 
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 where the probability to observe y between y and y + dy is defined to be 
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.  The expressions for 

 and 

 in the continuous case become
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J.2


The most commonly assumed distribution function is the Gaussian.  It is often assumed to apply in experimental situations, because, in the limit of large numbers of events, many distributions approach  a Gaussian.  The theoretical function is characterized by 2 parameters, a mean <y> and a root mean square (rms) deviation from the mean equal to 

.
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J.3

It is easy to show that the Gaussian given in Eq. J.3 is normalized to 1, and that the parameters 

 and 

 are 
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 and 
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 respectively  as defined in Eq. J.2.  Note that 
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 and 
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 refer to a large experimental data set, while 

 and 

 are parameters which define a theoretical distribution function, dP/dy.


Since it is used so extensively in the text, we quickly derive the Poisson distribution.  Examples used in the body of the text include mean free path, decay lifetime, and phototube photoelectron statistics.  Consider a case where the probability of interacting in traversing dx is dx/

; the mean free path is 

.  The probability of getting no events in traversing x is 
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J.4

The exponential law for no interaction is already very familiar having been quoted in the discussion of cross sections.  For getting N events in x, the appropriate probability is P(N,x), where we find none in dx and N in x (with the ordering of the events being assumed to be irrelevant). Assuming joint probabilities multiply;
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J.5


In terms of the mean number of events/traversal, 

, we recognize the Poisson photoelectron distribution, for example.  The Poisson distribution approaches a Gaussian in the appropriate limit as N becomes large.


Suppose the N events yield measures yi of some variable and that we wish to make an hypothesis that they are described by a distribution function which predicts y as 

 when characterized by a single parameter 

 (for simplicity).  Note that 

 is the theoretical prediction in what follows and not the sample mean as given in Eq. J.1.  For example, we measure N decay times ti and assumes a distribution with a single lifetime, 

.  The joint probability of the N independent measures defines a “likelihood function” L.  Recall that independent events have probabilities which multiply.  For example, the chance to roll a five on a die is 1/6, while the change to roll a six and a five (in that order) is 1/36.





J.6


The maximum of the likelihood would occur at a value of 

, 

 for which we have the largest joint probability.  In the special case of a Gaussian function  

, we minimize the 

 function; i.e. the method of least squares.  A maximum L, if dP is a Gaussian, means a minimum value of the argument of the exponential.





J.7


The minimum value of 

, in the special case 
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J.8

In the special case that all errors are equal, 

, 

 and we recover Eq. J.1.  The result Eq. J.8 is the best estimator of the mean of a set of measures assuming a Gaussian error distribution.  We expect that it is related to the sample mean, as indeed we have shown.


The algebra for the error on the mean is straightforward.  The value 

 occurs when 

 is minimized.  The estimate of y comes from looking at how fast we deviate from the minimum 
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; see also Eq. J.11.





J.9


If the measurements have different errors 

 then they are “weighted” as the inverse square of that error in finding the best estimation of the mean.  This is called the weighted mean technique.  If all individual measurement errors are the same, 

, then the best estimate of the error to be attached to the ensemble of N measurements is, 

.  We  remark on this 

 behavior in the body of the text several times.  We see that error estimators improve only slowly with the number of measures.  It is also intuitively clear that poor measurements with large errors (small weights) should not strongly influence the estimate for 

 relative to good measurements with small errors (large weights).


The idea of estimating 

 is that for a large data set the likelihood clusters about its most probable value, 

, and has a width 

 (See Eq. J.2).
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J.10

For the special case of Gaussian errors, 

 and 

.  Therefore, the best estimate of the error on 

 can be found using the expression for 

 and differentiating, 
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 which is minimized when 

 = 0 by assumption.  Differentiating again, 

, leading to an estimate for the error of  using the behavior of 2 as a function of .





J.11

Clearly, if the hypothesis is good, then 

 for a single variable, since in that case 

.  The test of how well a hypothesis fits the data depends on the size of 

.  The precise idea of “goodness of fit, and significance” can be explored in the references.


For multiple parameters, 

, specifying the hypothesis, the error analysis becomes more difficult.  Still, for N measurements at location 

 yielding values 

 of a variable 

, the 

 is the same as in Eq. J.7, and we minimize 

 with respect to the set j, j = 1, M by simultaneously solving the set of M least square equations.





J.12

An example might be chamber measurements sampling a trajectory in a magnetic field.  The orbit, 

, is a function of the parameters 
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, q, and p, as we have derived.  A least squares fit to the helical path will yield the best fit value of the parameters defining the path of the track.  In particular, we will determine the momentum of the track with some error.  This outline of a procedure makes quite specific what we mean by using detectors to measure the momentum of a track.


With M parameters, the errors on the parameters are estimated from a straightforward generalization of Eq. J.11.  However, in this case there is an “error matrix” H-1, of dimension M x M, with off diagonal elements indicating a correlation between the parameters.
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J.13

The diagonal elements of the inverse H matrix provide an estimator of the errors on the M parameters j.


For example, assume N points at xi measuring yi with error 

.  Assume no forces, so that the path 

 is a straight line.  By hypothesis 

.  The remaining degrees of freedom are N-M, so generalizing our previous discussion, we expect 

 would indicate a reasonable fit to the hypothesis.  The minimum value of 

 with respect to a and b occurs when
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J.14

This is 2 equations in 2 unknowns.  The solution is left as an exercise for the reader.





J.15


The error matrix on a and b follows from Eq. J.13.  The algebraic details are again left to the reader.





J.16

These formulae serve us as a concrete example of the least squares method in a case of practical interest.  They also illustrate the general method, Eq. J.12, Eq. J.13, in a particularly simple case.


Suppose we determine a variable 

 which is a function of N variables 

 each with a different error 

.  The maximum likelihood for 

, occurs, we assume, when the 

 attain their most likely values.
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Using the definition, Eq. J.1, for mean square deviation, we can find the error on 

 due to the errors on 

.  We assume that the fluctuations in the 

 are uncorrelated so that all cross terms, proportional to yi yj, i  j, average to zero.  The series Taylor expansion in N dimensions is applied.





J.18


This result allows us to “propagate” errors.  If we know the error in y, then we can find the error on any function of y = Y.  For a single variable the error in Y becomes, 

.  For a function of many variables, we can work out the result using Eq. J.18.  For example, the product 

 has a fractional error which “adds in quadrature”.





J.19


Many volumes have been written on probability and statistics.  The aim of this Appendix has been only to introduce the concepts of a data set, the sample mean and standard deviation and its characterization by a distribution function 

 defined by parameters 

.  The “best” estimate of the mean is derived along with an estimate of the error on that best estimate assuming Gaussian errors and using the method of maximum likelihood/least sources.  Propagation of errors is introduced as a final topic.  Having provided this Appendix, we have a self contained explanation of the topics in statistics alluded to in the body of the text.
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