Appendix K - Monte Carlo Models


Many of the problems encountered in making a realistic detailed model of a detector are so complex as to not be susceptible to analytic techniques.  Nevertheless, we can break the problem of modeling a very complex system down into a series of choices for the relevant dynamical variables.  The Monte Carlo method allows us to choose those variables and hence to construct such a model.


For example, suppose we want to model 

 ray production in a medium by incident muons.  The choices involved are first at what depth is the 

 ray made.  We choose x out of a distribution 

 where 

 is the cross section for 

 production.  If there is indeed 

 production within the active volume, the dynamics depends on a single variable, as has been mentioned previously.  We can, for example, pick the recoil electron kinetic energy from 

 from a distribution 

.  Having the energy, the recoil angle follows, as derived in Appendix A, from the 2-body kinematics.  We now have the position and momentum vectors of the electron at the point of production.  We can find the final state muon as well if we are to trace it further through the system.


If it is desired that the 

 ray be followed in its path, other choices must be made.  Suppose these are no fields, for simplicity, so that the path is, at least locally, a straight line.  We pick a distance which is short with respect to both the energy loss, dE1/dx, and for which the multiple scattering angle is small.  Over this distance the energy and angles of the electron can be considered to be constant.  We extrapolate the electron path as a straight line. We pick a new energy 

 by removing the ionization energy from the electron. We also pick new angles using a Gaussian distribution with 
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 about the initial direction due to multiple scattering in the medium.  Clearly, we can make a rather complicated model out of individual, fairly simple, choices.  In fact, almost all the formulae appearing in the body of the text would, at some point, be used in a Monte Carlo simulation of the complex detectors used today. Therefore, we need to be conversant with al the dynamics discussed in this text if we want to be able to make a realistic model of a detector.


How do we actually go about choosing the individual dynamical quantities which define the evolution of the system?  First, we need a “random number generator” which produces a uniformly distributed number r in the interval (0, 1).  These generators are widely available on almost all computer platforms.





K.1

Suppose we have a probability distribution dP(x)/dx defined such that dP(x) is the probability for x to occur between x and x + dx. If x is constrained to the interval (xmin, xmax) then the integral probability is normalized to one, so that the cumulative probability from xmin to x should be uniformly distributed.
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K.2

If r = 0 then x = xmin, while if r = 1, x = xmax.


A visual interpretation of 
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 is given in Fig. K.1.  The discrete case is shown when we can perform the integral to find N intervals of x with equal probability, 
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 is possible then x can be chosen by choosing index 1 < i < N, with x between xmin and xmax.
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Fig. K1:
Visualization of intervals in x, 
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, over which the integral 
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 is the same.


If this expression can be analytically inverted, we can “pick x out of a distribution dP(x)/dx .”  Let us examine some possibilities.  If dP(x)/dx is uniform, we can find a solution.  An example arises in azimuthally uniform scattering, for example unpolarized Compton scattering.  The aximuthal angle  is chosen as,





K.3


A more complex behavior is power law dynamics.  For example, we can pick out of 

 for Rutherford scattering, or from 1/T2 for recoil 

 ray kinetic energies.  By the way, the student is strongly urged to try a few of these examples - on the simplest computer that is accessible and sufficient.





K.4

The special case  = 0 reproduces Eq. K.3.


We have mentioned particle lifetimes several times.  A model for unstable particle decays would require picking a decay time out of an exponential distribution.  Another example is picking a free path L out of a mean free path, exp(-L/<L>).





K.5


In the energy rather than the time domain any unstable particle is described by a Lorentzian energy spectrum.  The Fourier transform of a decaying exponential with lifetime 

 is a Lorentzian with energy full width 
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 in this special case.  This type of behavior also occurs in any damped resonant system.
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K.6


The most common distribution that is used is, perhaps, the Gaussian distribution.  The integral leads to a non-analytic error function, so it seems that the technique fails.  However, a trick avails; using the joint probability and displacing the mean to zero, 

.
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K.7

Therefore, we can pick 

 from a uniform distribution as in Eq. K.3 and r2 from an exponential distribution as in Eq. K.5.  The result is, 

, 

, two Gaussianly distributed variables x and y with zero mean and 
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.  The mean can be restored by addition, 
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Let us now consider angular distributions.  In the case of isotropic dynamics, e.g. decay of a spinless particle, we can use the previous results for uniform distributions for 

 and 

.  The solid angle is then a constant.
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Suppose we have a more complicated angular distribution.  If, for example, 

, then we can use the power law behavior, Eq. K.4.
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What about the dipole behavior which is seen in non-relativistic radiation patterns?  In that case the integral can be done, but it cannot be analytically inverted.  In fact, for most distributions, an analytic inversion is not possible.
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K.10


How do we proceed?  Clearly, by performing the integral given in Eq. K.2 numerically.  Assume that x is contained in the interval (xmin, xmax).  Assume also that within that interval there is a maximum value of (dP(x)/dx) called (dP(x)/dx)max  We use the “rejection” method, see Fig. K.2.
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K.11

As can been easily seen in Fig. K.2, this procedure weights x by (dP(x)/dx).  Clearly if (dP(x)/dx) = 0, then x is never accepted while if (dP(x)/dx)  ~ (dP(x)/dx)max then x is almost always accepted.  For example, in the case 

 we pick 

 uniformly between -1 and 1.  If 

 is < r2 then we accept that choice of 

 and continue.  If not we repeat.  The student should explicitly try this procedure and verify that it works.


We can also combine methods by using the fact that joint probabilities are multiplicative.  Suppose we factor (dP(x)/dx) into g(x) and h(x) where 

.
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K.12

We might do this because h(x) is analytically invertable, for example.  We draw x from h(x) and then accept x if r < g(x).  Clearly the probability to accept x is g(x) by the rejection technique.
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Fig. K.2:
Plot of distribution function (dP(x)/dx) indicating how one approximates it by choosing uniform width strips in x and then accepting the strip x if (dP(x)/dx) /(dP(x)/dx)max < a random number.


Several “processes” with probability Pi can be used in a further generalization.  For example, the total probability might be the total cross section while the individual probabilities would refer to the possible reactions making up the total reaction rate.
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K.13

First choose i by picking a process using a weight Pi/

.  Then draw x from hi(x) either directly or by rejection.  Then accept x if r< gi(x).  Clearly very complex distribution functions for x can be built up this way.
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