12.
Hadronic Calorimetry

“All exact science is dominated by the ideal of approximation.”....Bertrand Russell


We discuss in this Section the calorimetric measurement of hadronic energy.  A “hadronic” particle is one which interacts strongly.  Examples are protons, pions, and kaons.  Note that calorimetry is useful in measuring all energy, even that which is invisible to tracking detectors such as neutral particles like 

 There are several new physical concepts which we need to understand in order to make intelligent design choices for a calorimeter designed to measure the energy of strongly interacting particles.  In Section 1 the concept of the mean free path for a nuclear interaction was introduced and numerical values were given in Table 1.2.  Since the geometric cross section goes as the square of the size of the nucleus, aN2, and since the nuclear radius scales as aN ~ A1/3, the nuclear mean free path in gm/cm2 units scales as A1/3(Section 1).
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Therefore, in analogy with the radiative mean free path (Section 11), we define a nuclear mean free path which is the depth, 

, in units of nuclear interaction lengths.  Numerically, in lead the inelastic  nuclear mean free path is 194 gm/cm2 (Table 1.2), so that the radiation length divided by the interaction length is only about 3.3%.  Therefore, if a photon is incident on a 20 X0 deep EM calorimeter it will be almost totally absorbed (Section 11).  In comparison, an incident hadron would have a probability simply to interact once hadronically of only 48%.  As we will see, those that do interact create a cascade which occupies several 

 in depth.  Thus we can do “particle identification” by exploiting the differences in the longitudinal development of showers between electrons/photons and hadrons.  The transverse size of EM and hadronic showers also differs.  We will return to this theme in Section 13.

12.1
Properties of Single Hadronic Interactions


A “streamer chamber” photograph of a high energy single hadronic interaction, 300 GeV 

, is shown in Fig. 12.1.  Note that there are a large number of emitted secondary particles.  Note also that the interaction must have a limited transverse momentum imparted to the secondary particles because they are typically moving forward, following the incident particle direction.  


Data on the mean number of charged particles emitted in a hadronic collision as a function of the center of mass energy, 

, are shown in Fig. 12.2.  Note that this is a semi-logarithmic plot which means that a first approximation to the data is that the mean multiplicity, <N>, grows only logarithmically with the energy.  Thus the CM energy, 

, is largely going into the kinetic energy of the secondary particles rather than into simple particle production, which would imply 

.  Reading off Fig. 12.2, at 

 = 100 GeV, the mean number of secondary charged particles, 

, is about 15.  
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Fig. 12.1:  
Streamer chamber photograph of a 300 GeV - hadronic interaction illustrating the large number of secondary particles and the limited value of the transverse momentum.  (From Ref. 7, with permission.)


The emitted particles are expected to be, on average, 2/3 charged and 1/3 neutral since they are mostly pions and we assert that all pions, 

, are emitted with equal probability.  Pions are the lightest hadrons and are therefore preferentially emitted in hadronic interactions.  Neutral pions quickly decay into two photons which share the parent 

 energy.  These photons then participate in the hadronic cascade as an electromagnetic component which can be treated in ways already described in Section 11.  

[image: image2.png]
Fig. 12.2:
Data on the mean number of charged particles as a function of the C.M. energy 

 showing the <N> ~ ln(s) dependence.  (From Ref. 8, with permission.)


In describing electromagnetic cascades we said that the multiplication process continued until the electrons reached the critical energy.  There is a similar situation in the hadronic interaction.  Just as we need a minimum energy for a photon to create an electron-positron pair, a hadron needs a minimum laboratory energy in order to make a pion.  The threshold lab energy, ETH, for 

 is roughly twice the pion mass, 

 (see Appendix A). Therefore, we have a characteristic energy below which the charged particles simply ionize since they're unable to multiply by making more pions.  
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As was seen in Section 11, there is a limited transverse momentum for electromagnetic reactions, <pT>EM which is set by the electron mass.  For hadronic reactions it is set by some poorly understood collective phenomena and <pT>h is empirically about 0.4 GeV although it too depends logarithmically on 

.  




[image: image3.wmf]GeV

p

m

p

h

T

e

EM

T

4

.

0

~

~


(12.3)


For a single hadronic interaction we expect the multiplicity to depend logarithmically on the laboratory energy.  For a dense high Z material we expect the radiation length to be much shorter than the interaction length.   Thus, the electromagnetic part of the cascade develops quickly. We also expect the neutral to charged ratio, fo, in a single interaction to be equal to1/3, 
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12.2
The Hadronic Cascade - Neutrals


What do we expect for the full hadronic cascade? In each interaction we expect to produce, on average, 2/3 charged pions and 1/3 neutral pions.  We expect the mean multiplicity to depend only logarithmically on the parent energy and we can, in lowest order, ignore this slow variation.  It is very important to understand that 

 production is an irreversible part of the hadronic cascade because, when 

's are produced, they immediately decay to photons. Photons then develop as an electromagnetic cascade which has a characteristic length scale 

 which is typically much shorter than 

.  Therefore, the 

's produced are quickly absorbed and “drop out” of the shower.  The energy transport to greater depths is thus carried out largely by the charged pions.  


A schematic picture of a hadronic cascade for the first four generations is shown in Fig. 12.3.  In the interest of clarity we assume that an incident charged hadron makes only three pions per interaction.  The number of neutral particles, 

, and the number of charged particles, 

, as a function of depth v in the cascade is plotted.  The neutral pions are represented as dashed lines.  The charged particles carry the shower deeper into the material and they deposit only ionization energy which is small. 

[image: image4.png]
Fig. 12.3:
Schematic of an hadronic cascade for the first 4 generations indicating depth v, number of neutrals (---) in the cascade, No, and number of charged particles (() in the cascade, N(, for the simplified case of <N> = 3.


Assuming equal partition of the energies (Section 11) and labeling the generations by (, we can work out the number of charged and neutral particles in the cascade in this simple minded model.  Note that, as in the EM case, we ignore fluctuations and simply assign the mean values for the interaction points, 

, for the particle secondary multiplicity, N, and for energy fraction, 

. We also ignore the logarithmic energy dependence of N.
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Under these assumptions, the number of 

's, 
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, as does the number of charged particles, 
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. The total energy going to neutral particles, Eo, is then straightforwardly summed up.  The effective neutral fraction is “fo” = Eo/E. 
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The number of generations, in exact analogy to the electromagnetic case, is defined by the condition at “shower maximum” that the mean energy of charged particles in the cascade is equal to the threshold energy for pion production, 

.
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As a numerical example, a 250 GeV hadronic shower is shown in Table 12.1.  The total number of secondary particles emitted per interaction at that center of mass energy, 

, is taken to be <N> = 9 which is compatible with the data given in Fig. 12.2.  The total number of generations is rather small, vmax = 3.  The particle energy per generation drops by a factor of 9 in each generation. The number of particles in the cascade increases by the same factor of 9 at each interaction, with 1/3 of the produced particles dropping out of the cascade at each generation as 

's and 2/3 continuing to initiate the next generation.  Therefore, the energy deposited by the 

's, which starts out at zero before the first interaction, falls off slowly and sums to 178 GeV.  Although the fundamental interaction of a hadron gives a neutral energy fraction fo of 1/3, in this particular example the energy deposited by neutrals in the hadronic cascade is, “fo” = 71%.  

Table 12.1

Simplified model for a hadronic cascade developed

by a 250 GeV incident pion.

Generation

v
((v)

GeV
N±(v)
No(v)
Eo(v)

(GeV)

0
250
1
0
0

1
28
6
3
84

2
3.1
36
18
56

3
0.35
216
108
38





178 GeV

fo = 1/3,“fo” = 0.71


Clearly in the limit where the incident energy becomes infinite, since the 

's are the irreversible part of the cascade, all of the energy in the hadronic cascade will be neutral.  The charged pions will merely serve to transport the shower from generation to generation, depositing energy only by ionization which is small (~0.3 GeV in going 

 ~ 200 gm/cm2 in Fe - see Table 1.2).  In the low energy limit where vmax  1, there is only 1 generation and the neutral fraction is fo = 1/3.   


Some more serious and exact model (see Appendix K) results for the effective neutral fraction are shown in Fig. 12.4 where we see that the absolute number of produced 

's increases as the log of the energy and the fraction of energy in the electromagnetic part of the cascade rises from ~1/3 at low energy, E ~ 3 GeV, to about 70% at 50 GeV.  Therefore, the simple-minded estimate given in Eq. 12.7 is in reasonable accord with a detailed Monte Carlo result.

[image: image9.png]
Fig. 12.4:
a) Model results for the growth of "fo" as a function of energy.  b) Total number of o in the cascade as a function of incident energy.  (From Ref. 9, with permission.)

12.3
Binding Energy Effects


There are still other new physics effects in hadronic interactions.  One of them is that the medium itself is excited by amounts which are substantial on the scale of the incident energy.  In an electromagnetic cascade we use the nucleus simply as a way to balance energy and momentum.   The medium itself does not participate in the fundamental cascade processes such as Bremsstrahlung and pair production and the nucleus is inert.  The scale of energy transfer in a collision is ~ me which is small on the scale of the nuclear binding energy (~ 8 MeV/nucleon, see Fig. 12.17).  


For the case of hadrons, the interactions themselves are with the nucleons in the nucleus and the energy transfer that we quoted in Eq. 12.3 is the characteristic energy transfer.  Hence, we see that the nucleus is disrupted.  Therefore, substantial amounts of energy will go into “binding energy losses” where the nucleus is excited. Detailed Monte Carlo results for three different models are shown in Fig. 12.5.  The fraction of energy going into electromagnetic showers rises with energy, and the fraction going into binding energy effects and nuclear excitation or 

 ionization (“charged particles” in Fig. 12.5) falls.  The electromagnetic piece dominates at high energy, E 

 50 GeV.  The next most important effect is excitation of the medium, followed by ionization losses. Although the results depend in detail on the model, the non-electromagnetic parts of the cascade are of order 1/2 of the total at E ~ 50 GeV.  The fact that the model results differ is an indication that the hadronic cascade is not very well modeled. A new generation of computer simulations (see Appendix K) has recently dramatically improved the situation.

[image: image10.png]
Fig. 12.5:
Model results for the fraction of energy going into binding energy, neutrals, and ionization as a function of incident energy for different models.  The rise of the EM fraction with energy (see Fig. 12.4) implies EM dominance of the hadronic shower for E>50 GeV.  (From Ref. 9, with permission.)


This binding energy ultimately appears in the calorimeter when the nucleus de-excites emitting a slow neutron, photon, or other fragments.  It may well be, however, that the calorimeter is not sensitive to the deposit or that the deposit comes late enough that it is not detected because we are trying to do rapid pulse shaping in a high rate environment. We expect that a smaller fraction of the energy of an incident particle is detected in a hadronic calorimeter than in an electromagnetic calorimeter where, as we said, the medium itself does not participate and the time for energy deposit is consequently rapid.  We also expect that there are stochastic fluctuations in the amount of energy given to the medium and that those fluctuations will limit the attainable energy resolution in a hadronic calorimeter.  

12.4
Energy Resolution


In analogy to the discussion in Section 11 on electromagnetic calorimetry, we expect that the stochastic contribution to the resolution for the hadronic case is going to be partially defined by the total number of particles in the cascade which in turn is controlled by the energy cutoff in the multiplication process.  The electromagnetic shower is terminated at EC while the hadronic cascade is cut off at the threshold energy for 

 production, ETH.  
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We expect the ratio of hadronic to electromagnetic stochastic coefficients to be of order 6.  Data is plotted for a specific calorimeter in Fig. 12.6 showing stochastic term coefficients for both electromagnetic and hadronic incident particles as a function of energy.  We see that this particular device is fairly coarse sampling, with ~ 20% stochastic coefficient, a, for electrons and ~ 60% for hadrons.  There are also other physical processes going on such as binding energy and nuclear excitation in the medium, which have their own inherent fluctuations.  Thus hadronic calorimetry will never be as precise as electromagnetic calorimetry because the underlying physical processes have larger intrinsic fluctuations.

[image: image11.wmf]
Fig. 12.6:
Stochastic term coefficients for incident e and h as a function of energy for Fe sampling calorimeters.  (From Ref. 9, with permission.)


On the subject of the stochastic coefficient, we argued that it should depend on the square root of the sampling thickness, and showed some data for electromagnetic calorimetry which confirmed that idea.  Exactly the same arguments carry through for hadronic calorimetry.  In Fig. 12.7 we show the stochastic coefficient for hadronic calorimetry using steel sampling plates as a function of the thickness of the plates.  Note that the expectation that the coefficient increases as 

 is roughly obeyed.  However, extrapolation to 

 = 0 does not yield an infinitely good resolution because there are non-sampling fluctuations.  Compare the electromagnetic case, Fig. 11.5, to the hadronic case. We can never obtain the very good resolution that can be obtained in a fully active electromagnetic calorimeter such as PbW04.  One of the mechanisms which cause the worsened resolution is called “non-compensation” which will be discussed later in this Section.

[image: image12.wmf]
Fig. 12.7:
Stochastic term coefficient as a function of the thickness of the steel plates.  A functional dependence 
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 is expected. (From Ref. 9, with permission.)

12.5
Profiles and Single Cascades


We can, in analogy to the electromagnetic profile, Section 11, write down an energy profile for hadronic interactions. 
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There are two pieces, as we might expect, in the energy deposition.  There is a piece which is basically the electromagnetic fraction, fo, developing from the first interaction as an electromagnetic shower.  The second piece refers to the energy transport due to the charged particles with a characteristic length scale which is roughly equal to the nuclear absorption length.  Although the actual energy deposition is mostly due to photons, energy transport by charged pions leaves 

 ~ 1 as the relevant scale. 


Data for a 270 GeV pion beam incident on a stack of 3/4" lead plates sampled by scintillation counters is shown in Fig. 12.8. One plot is simply the samples of single events summed over many hadrons.  We observe a rather smooth featureless curve.  It's important to be careful and not jump to conclusions but to look at the profile with the first interaction point location subtracted.  Remember that there is a fluctuation in the location of the first interaction point which occurs on the average at a depth of 1 

 but with a fluctuation equal to the mean or 

.  The profile with the first interaction point subtracted is also shown. Now we see the two characteristic length scales.  The initial electromagnetic part is evidently due to the 

's produced in the first collision which carry off about 1/3 of the energy.  The component with a characteristic length of order the nuclear interaction length in lead has an energy area roughly 2/3 of the total. 
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Fig. 12.8:
"Profile" for 270 GeV pions incident on a stack of 90 Pb plates each of 3/4" thickness.  O - Summed over many events.  * - Longitudinal profile with variable interaction point subtracted.

[image: image1.png]
Therefore the shape given in Eq. 12.8 appears to be a plausible representation of the behavior of the energy deposition summed over many interactions - i.e. the energy profile.  In the electromagnetic case, we showed individual events, Fig. 11.3, and argued that the main fluctuation was the fluctuation in the interaction point.  In Fig. 12.9 are shown the energy depositions of six single events in a calorimeter for 270 GeV incident pions.  Notice that the fluctuations inherent in the cascades are very large.  Thus, the concept of a well reproduced shower shape developing in the same way that electromagnetic cascades develop is simply not valid.  The profile given in Eq. 12.8 is sufficient to describe the average behavior of a hadronic shower but extremely misleading if thought to apply on an event by event basis.  
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Fig. 12.9:
Longitudinal energy profiles of 6 individual 270 GeV pions incident on a stack of 40 Pb plates of 1/8" followed by 55 Fe plates of 1".   The fluctuations inherent in h cascades are very evident.


A better model of the event by event behavior of a hadronic cascade can be derived using some data on individual pions incident on a stack of 3/4” lead plates.  Six events of the data set are shown in Fig. 12.10. The data can be understood to consist of a sum of “electromagnetic clusters” of fitted energy characterized by a fixed shape extending in depth by ~25 

 (~6 samples).  The electromagnetic cascades develop and die out in five or six plates, see Fig. 12.8.  The recurrence of such electromagnetic clusters at different depths indicates the transport of energy by charged particles with a length scale equal to 

 (~9 samples). Data with a lead calorimeter was chosen because lead has a large ratio of 

 ~ 30 which serves to separate the EM clusters in depth
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Fig. 12.10.
Longitudinal energy profiles of 6 individual 270 GeV pions incident on a stack of 90 Pb plates of 3/4" thickness.  The EM clusters with energy transport by charged particles are a prominent feature of the plots.

12.6
e/h and the “Constant Term”


Let us consider now the situation for a calorimeter where the response to electrons and the response to hadrons are different.  We might expect this to naturally be the case because of the large amount of energy lost in hadronic interactions to the binding energy.  The electron response is defined to be e, while the response to hadrons is h.  Since the 

 decays rapidly into photon pairs and since photon showers are similar to electron showers (see Section 10), the 

 response is about the same as the electron response.


Consider the case of an incident hadron with effective neutral fraction 

. Due to statistical fluctuations, 
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 (see Appendix J), in the neutral fraction there will be a limit to the achievable resolution of the hadronic measurements.  If the e/h response of the calorimeter is not equal to 1, the neutral fluctuations cause an irreducible fractional energy resolution.
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As an example, for a 200 GeV hadron with mean total pion multiplicity of 9, the neutral multiplicity would be 3.  Therefore, the fluctuation of the neutral particle fraction, 

, if taken to be equal to the fluctuation in the first interaction, 

, is ~17%.  The result is in good agreement with the results of a complex Monte Carlo program (Ref. 12.3).
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(12.11)

Hence, a calorimeter with a 20% different response to electrons and hadrons, e/h = 1.2, which is of the same size as the binding energy losses, would have a fractional energy error or “constant term” of 3.5%. This means that the calorimeter could not measure energy to better than 3.5% even though the stochastic term at very high energies 

0.   


It is conventional to write the resolution of a calorimeter as in Eq. 12.8.  The stochastic coefficient, a, is due to sampling fluctuations.  The “constant term”, b, is due to intrinsic defects in the calorimetry either in the physics, e/h ( 1, or in the non-uniformity of the manufacture of the medium.   The fine sampling value of ~50% for 

, Fig. 12.7, can be reduced to ~30% in hadron calorimeters designed to have e/h = 1.


We have made the approximation that the fluctuations in the effective neutral fraction, 

 are dominated by the fluctuations in the first generation, 

, which is plausible because that is where most of the energy is deposited, (see Table 12.1).  We further assumed that the fluctuations in the neutral particle fraction, 

, are Gaussian with the number of produced neutral particles which we estimate using the data of Fig. 12.2.  Note that (dE/E)dfo is not rigorously a constant error since as the energy goes infinity “fo” .  If the neutral fraction goes to 1, then the error will go to 0, “

” ~ 1/(<N>  0.  (Eq. 12.11.)
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At the low end of the energy scale we expect that the different thresholds cutting off the multiplication processes for electromagnetic and hadronic interactions will cause the intrinsic e/h ratio to change.  Since the binding energy losses reduce the hadron response, and since they in turn are reduced at low energies, we expect the hadronic response to increase, thus reducing e/h as the energy decreases.


Data on the e/h ratio as a function of incident energy are shown Fig. 12.11.   The low energy e/h ratio is about 0.6 rising to a ratio near 1.  The transition region occurs over a range of incident energy from 0.5 GeV to 3 GeV, with the low energy scale set by the pion production threshold energy, ETH, of 0.28 GeV.  The data show that there is an energy dependent hadron energy nonlinearity at low energies even when the e/h ratio is approximately 1 at energies of 5 GeV and above.  Clearly, the low energy hadron response of a specific calorimeter needs to be well measured because it is difficult to predict.  We note that this effect is due to intrinsic physics and cannot be evaded.

[image: image20.png]
Fig. 12.11:
e/h ratio as a function of incident kinetic energy where 

.  (From Ref. 10, with permission.)

12.7
Transverse Energy Flow


In the Section on electromagnetic calorimetry, Section 11, we discussed the characteristic transverse size for an electromagnetic shower and defined the Moliere radius.  For a hadronic shower we proceed by analogy.  We know that the energy per particle at the end of the shower is roughly the threshold energy for pion production, ETH.  We also know that the mean transverse momentum of the produced secondary particles is roughly, 
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 400 MeV, Eq. 12.3.  The angle for produced secondary particles at hadronic shower maximum would then be the mean transverse hadronic energy over the threshold energy.  
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We define the transverse distance for an hadronic shower particle, 

, as the distance which is traveled going the last interaction length, 

. Since 

 is ~ 1, rh is the same size as the interaction length itself which is, for example, 16.7 cm in iron (Table 1.2).  The definitions for the characteristic transverse sizes of both electromagnetic and hadronic cascades are shown in Fig. 12.12.  Note that 

 is driven by multiple scattering while 

 is driven by the production angles of the secondary particles.  The reason for the difference is that 

 but 

 ~ 

 

.
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[image: image23.wmf]a)
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Fig. 12.12:
Definitions of characteristic transverse sizes of cascades:   a) EM cascade, b) h cascade.


Data are shown for a one-dimensional projection of the transverse position distribution in a Uranium sampling calorimeter in Fig. 12.13.   Indeed, the distribution of transverse coordinates is on the scale of 

.  In fact, as we might expect from the previous discussion, things are slightly more complicated.  There is a “core” of electromagnetic energy at small transverse distances due to 

‘s depositing a fraction 

 of the energy. In addition there is a distribution with a larger transverse size due to the energy transport of subsequent generations by the charged pions. The transverse shape of an hadronic shower has “two components”.  Data integrated over all depths for 150 GeV pions in a lead sampling calorimeter show that one component has a characteristic size of 3.7 cm while the second component has a size of 14.3 cm.

[image: image24.png]
Fig. 12.13:
Data on the 1-D projected (y) distribution (in cm) of transverse energy in a U sampling calorimeter at a fixed depth 

.  (From Ref. 10, with permission.)


The transverse containment of the electromagnetic and hadronic showers allows calorimeters to be used as position measuring devices as well as energy measuring devices. The shower development is approximately one-dimensional. We expect the transverse position resolution to depend on the fluctuation in the number of shower particles if, for example, the energy weighted center of gravity method is used as an estimator of the incident particle transverse position.  Therefore, we expect the error in the position measurement to go as 

.  Indeed, for typical electromagnetic calorimetry the error in the transverse position is 17 cm/

 if E is expressed in GeV. For pions the corresponding coefficient is 31 cm reflecting the larger hadron transverse shower.   The energy dependence in both cases is stochastic in nature, going as 

.  

12.8
Radiation Damage


As the new accelerators and space station missions come on line, we get to a situation where there are large radiation doses.  We need, then, to consider radiation damage.  Radiation damage will usually reduce the response of the calorimeter.  More importantly, since the radiation damage is not uniform over the calorimeter active area, there is an “induced” non-uniformity of response in the calorimeter. Because there are fluctuations in both electromagnetic and hadronic showers, errors are induced in the energy measurements. Individual showers develop differently in depth and sample different parts of the calorimeter, which have different radiation damages.  We can try to evade that non-uniformity by a variety of techniques.  This is an interesting topic all by itself and is a crucial aspect of detector design.  We refer the interested reader to the references, e.g. Ref. 12.6.  

12.9
Energy Leakage


The fact that all calorimeters are of finite length, so that energy leaks out the back, must be faced.  Fluctuations in shower development lead to fluctuations in the energy leakage and therefore measurement errors.  Often “inert” material is put in front of calorimeters, such as tracking detectors and the like (Section 13).  For example, a solenoid magnet coil may be placed in front, causing the electromagnetic and hadronic showers to sometimes develop in this inert material.  It is a very interesting topic to see how you can “weight”, or over sample, the energy deposit at the exit point of this inert material in order to regain some of the energy resolution.  Similarly, with leakage, you can also “weight” the energy exiting the calorimeter.   A plot of the unweighted containment depth for hadrons of different energies is shown in Fig. 12.14.  For an incident hadron of 1 TeV energy we need ~11 

 in order to contain 99% of the cascade energy on average.  The required depth only increases as ln (E), so that calorimeters for high energy experiments need grow only modestly.

[image: image25.wmf]
Fig. 12.14:
Required depth in iron for 95%, open, and 99%, closed, average energy containment of a hadronic shower as a function of energy.  The slow logarithmic dependence is evident.  (From Ref. 8, with permission.)


A plot of the energy response of a 7 and 11 

 deep calorimeter is shown in Fig. 12.15.  Clearly, a low energy “leakage tail” of the thin calorimeter is seen in which significant energy is lost out the back.  We can reduce the tail, Fig. 12.15c, by over weighting the samples at the rear of the calorimeter.  By using this technique we can restore some of the resolution of a thin calorimeter which has financial implications.  Note the induced “high side tail” in Fig. 12.15 where we err since we overcorrect some showers, due to the fluctuations in shower development.

[image: image26.png]
Fig. 12.15:
Energy sampled in a calorimeter for 100 GeV incident pions. a) 7 

 deep  calorimeter,  b) 11 

 deep calorimeter and c) 7 

 deep calorimeter with exit layer overweighting.


Typically, muon detectors are placed behind calorimeters (see Section 13) since low energy 

 muons only ionize while all other particles (except neutrinos) interact more strongly.  However, there is an intrinsic limit placed on the ability to filter out unwanted particles.  Shown in Fig. 12.16 is the probability for a hadron cascade to “punch through” and deposit energy behind a given depth of steel for different energies.  After 1

 the probability begins to fall exponentially with a characteristic length (~

) which grows slowly (logarithmically) with energy.  This behavior is expected given our previous discussion of the cascade mechanism, 

, (Eq. 12.7).

[image: image27.png]
Fig. 12.16:
Probability for at least one 1 M.I.P.  to occur at a depth of steel for different incident hadron energies.   (A. Bodek, private communication.)


However, at the few tenth percent level there is another component visible in Fig. 12.16.  This component falls off slowly with depth and is of magnitude roughly proportional to E.  It is due to the decay of pions to muons in the cascades.  These decays occur before the pion is absorbed and they are intrinsic.


Note that on the earth’s surface cosmic rays are mostly muons (see Section 6).  The earth’s atmosphere is a thick but diffuse “calorimeter” of depth ~ 1000 gm/cm2 ~ 11.4
[image: image28.wmf]I
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 of N2 gas (see Table 1.2) which “leaks” muons since the diffuse “absorber” allows 

 decay, with a lifetime at rest of 

 = 7.8 m, to compete with cascade absorption due to hadronic interactions.  The deep component visible in Fig. 12.16 has a similar origin but its fraction is greatly reduced since in that case the calorimeter is a dense solid absorber.  Still, at sufficient depth, the majority of particles remaining in a shower are muons both for ground level cosmic rays and deep in solid steel calorimeters.  Fortunately for us, living as we do deep in our atmospheric “calorimeter”, muons only deposit ionization energy in us. It is this leakage which defines the irreducible dose of 0.2 rad due to cosmic rays.

12.10
Neutron Radiation Fields


Implicit in the discussion of binding energy losses in hadronic calorimetry was the presence of many neutrons which appear as decay products during the nuclear de-excitation of the medium.  A plot of the binding energy per nucleon as a function of A is shown in Fig. 12.17.  The value is roughly constant with A for A 

 15.






(12.15)
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Fig. 12.17:
Binding energy per nucleon in MeV as a function of atomic weight A.  (From Ref. 1, with permission.)

A transfer of energy appropriate to hadronic cascades, 

, implies that the absorptive medium is excited.  These excited nuclei later decay, often with the emission of soft neutrons or photons with energies of order B.

 
A very crude rule of thumb is that 5 n/GeV are released in a shower and localized near hadronic shower maximum.






(12.16)

These neutrons will obviously have kinetic energies, 

, near B. At these low energies they can only elastically scatter or participate in exothermic neutron capture reactions. For example, the mean free path for a 5 MeV neutron in steel is 9.4 cm.


Scattering off a heavy nucleus transfers little energy (see Appendix A).  Thus the n become “transparent” to the medium and diffuse out of the calorimeter as a “neutron gas”.  Typical energies at the point of transparency are low.






(12.17)

The elastic n-p scattering cross section as a function of Tn, from 10 keV to 300 MeV, is shown in Fig. 12.18.   At 1 MeV the cross section is 4 b, and a rough 

 behavior is observed, where  vn is basically the incoming flux (see Section 1).

[image: image30.png]
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Fig. 12.18:
n-p elastic cross section as a function of n kinetic energy.  (From Ref. 1, with permission.)

12.11
Neutron Detection


The kinematics for n + A elastic scattering imply a recoil n kinetic energy, T, which has maximum and minimum limits. Algebraic details are given in Appendix A.






(12.18)

Clearly for large A, T ~ Tn and little energy is transferred to the medium. Basically, the neutrons just bounce their way out of a heavy material with a constant energy, suffering no energy loss in collisions.

It is also clear that for A = 1, or n-p elastic scattering, the n can lose a substantial fraction of its energy.  This loss mechanism can be exploited by detecting the recoil p from the initially almost free p in the hydrocarbons of a plastic scintillator, for example.  This mechanism works well for Tn ~ 1 MeV neutron detection.  The large cross section, evident in Fig. 12.18, means that the scintillator need not be very thick.  A 1 cm, x, thick counter of CH has a fractional mean free path of 

 = 

 ~ 15% scattering probability for a 1 MeV neutron. The average energy transfer of 0.5 MeV can be detected efficiently (Section 2). It is also clear that scintillator based sampling calorimetry will efficiently absorb the 1 MeV neutrons leaking out of the high Z absorber.  Kinematics also explains why hydrogenous, low Z, material is used to shield against slow neutrons.


The “neutron gas” will be absorbed in the light sampling layers of a calorimeter if they contain hydrogenous material.  The gas also diffuses while the n slow down by elastic collisions.  This gas may be treated by the diffusion equation, which we already have used for a molecular gas (Section 8).
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The neutron number density is n and the velocity of the neutron “fluid” is 
[image: image32.wmf]v

r

.  The methods used in Section 8 may be adopted in the present case, where D is the neutron diffusion coefficient.


The slowing down process ends when the neutrons are in thermal equilibrium with the medium, Tn ~ kT.  How can we detect neutrons with such a small energy?  A plot of the cross section of n on various nuclei down to thermal 

 energies is shown in Fig. 12.19.  In this figure the unitary limit 

 is indicated (see Sections 1, S wave unitarity), as is the geometric cross section 

 (see Section 1).  These two values for ( bracket the experimental values on the low and high ends respectively, which however span 6 orders of magnitude. Carbon has a ~ constant cross section, ~ 6 b, while boron has a 1/vn behavior.

[image: image33.png]
Fig. 12.19:
n-A reaction cross sections for capture reactions of thermal neutrons.  (From Ref. 1, with permission.)


The thermal neutrons can be detected by capture reactions.  Typical exothermic reactions are 

 (2.2 MeV) and 

(4.76 MeV).  The emitted photon can be detected via Compton recoil, while the 

 must be directly stopped in a Li doped solid state detector due to its short range.  These and other capture reactions are the basis for dosimetry in the case of slow (thermal) neutrons.  


The design of detectors in some environments must take into account the existence of a large flux of neutrons.  Detectors which will survive in the next generation of hadron colliders must live in a sea of neutrons with energies from ~ 1 MeV down to thermal scales and must operate in a fashion insensitive to this neutron “bath”.  That task is a major challenge for the new generation of detector designers.
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