II.B.
Scattering and Ionization


In Sections 2, 3, and 4 we examined non-destructive velocity measurements with detectors which convert the emitted light (scintillator, Cerenkov, and TR respectively) into an electrical signal.  We now move to the second phase of the examination of non-destructive readout, where a charged particle transfers energy to the nuclei (Section 5) or the electrons (Section 6) of the detecting medium.  In the case of transfer to nuclei, the direction of the incident particle is altered, which limits how “non-destructive” the measurement of the properties of the particle we wish to determine is.  In the case of transfer to the electrons, the resulting ionization energy loss is detected.  Again, the fractional energy transfer to the detecting medium limits just how “non-destructive” the readout will be.  In the extreme case the incident particle may be slowed and halted in the detecting medium. However, for particles with energy > 1 GeV passage through a few cm. Of gaseous detector deposits only keV of energy, while a cm. Of solid plastic causes only of order MeV energy loss (0.2% for a 1 GeV particle).

5.
Elastic EM Scattering

“Shoot pool Fast Eddy.”.... Minnesota Fats (The Hustler)


In this Section we look at the scattering of an incident charged particle by the detecting medium.  This knowledge is needed if we are to understand the physics of charged particle detectors, which are based on detecting the energy transferred in the collision.  We initially look at Coulomb collisions.  Single collisions are termed Rutherford scatters caused by collisions with atomic nuclei.  Multiple Coulomb collisions are then examined leading to important insights about the angular loss of information which occurs in scattering.  Finally, we consider not angular deflection but energy transfer in Coulomb collisions.  In that case, the scattering off atomic electrons is relevant.  In particular, ionization of the atom with the ejection of freed electrons, “

 rays”, is an important topic, which is discussed in this Section.  The transfer of some of the energy of a charged particle to the medium is the basis of many of the devices discussed in Sections 6 through 9.

5.1
Single Scattering off a Nucleus



We begin by considering single scattering off the Coulomb field of the nucleus by incoming charged particles.  In performing scattering experiments it is important to realize that the atomic electrons are diffused over a characteristic size of ~1 

 as we said in Section 1.  The nucleus is concentrated in a region a factor of 105 smaller.  As first noted by Rutherford, the fact that we observe large angle scatters is a statement that there are small point-like scattering centers within the atom.  It is the nucleus that is capable of causing these large angle scatters because all of the charge is concentrated at a point. 


The observation of point-like structure is a recurring theme in physics.  It has been often repeated; molecules (atoms), in nuclei (nucleons) and in protons themselves (quarks).  At each stage so far in our exploration of the microworld, objects have been discovered to be composites of yet smaller objects.  


The kinematic definitions which we use are shown in Fig. 5.1 where a singly charged particle with velocity  

c and mass M is incident on the field of a nucleus at rest with atomic number Z at an impact parameter, or transverse distance, b.  The incoming particle suffers a scattering by angle 

.  Note that for small angle scattering the incoming to outgoing symmetry of the problem tells us that for central forces the impulse is transverse.  The longitudinal impulse integrates to zero, as indicated in Fig. 5.1.  
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Fig. 5.1:
Kinematic definitions for a Coulomb collision of a charged particle by a nucleus of atomic number Z at impact parameter b causing a scattering angle . 


The force, F, is electric, so it goes as 1/r2.  The non-relativistic characteristic time for the interaction, 

, is defined by the fact that the force falls off rapidly with distance and thus is only active on time scales where the incident particle is near to the scattering center.  





(5.1)


The net momentum impulse, 

, is in the transverse direction and can be approximated as the force at the point of closest approach, F(b), times the characteristic time over which that force is active.  The characteristic transverse momentum transfer divided by the incident momentum gives the scattering angle.  The Rutherford form for the angle, 

, in the small angle approximation is given in Eq. 5.2.  Clearly for high Z targets the scattering angle is larger because the electric field is stronger.  For small impact parameters we see a stronger field and therefore the scattering angle is larger.   For low velocities we spend a longer time near the nucleus and therefore low velocity also means large scattering angles.  
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Another form for 

 is 

 ~ (Z(/b)/T where T is the projectile kinetic energy.  We recognize 

 to be the ratio of the potential energy at r = b to the total kinetic energy, 

 = U(b)/T.

For example, consider 1 MeV kinetic energy, T, protons, T = -M, incident on lead (Pb) nuclei
 at an impact parameter of 100 fm. The Rutherford scattering angle, Eq. 5.2, is 

 radians or ~68o so that the scattering angles can, indeed, be large.

5.2
The Scattering Cross Section


What has just been “derived” is the relationship between the scattering angle and the impact parameter.  Clearly, in an actual experiment, we cannot aim an incident particle at a particular nucleus so that b is not measured.  Since we can't aim, all areas transverse to the incident beam are taken to be equally probable and the scattering probability, dP, is proportional to the transverse area element 
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.  Since there is a one to one relationship between impact parameter, b, and scattering angle, 

, we can simply relabel the scattering.  Note that the exact form of the relationship depends on the form of the forces, so that we can, in principle, infer the functional form of the force law by observing the scattering angle distribution (see Section 5.11).



[image: image4.wmf]÷

ø

ö

ç

è

æ

=

W

=

W

W

W

=

=

q

q

s

f

q

q

s

f

s

s

d

db

b

d

d

d

d

d

d

d

d

bdbd

d

d

b

d

dP

sin

sin

,

~

 

~

r


(5.3)


Equation 5.3 says that the number incident at a given impact parameter b is equal to the number scattered into the corresponding angle 

.  Referring back to Eq. 5.2, we can then immediately write down the small angle approximation for the Rutherford differential scattering cross section, 

.
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The differential cross section has the power law behavior, ~

, which is characteristic of the Coulomb scattering of point particles.  It is a general characteristic of point-like processes that they obey power law scattering distributions and have power law energy dependence.  Collective phenomena, or distributed sources, have a more complicated and, typically, much more rapidly falling distribution as we saw in Section 2 for the photoelectric effect.  Some data actually taken by Rutherford and collaborators are shown in Fig. 5.2.  Note that measurements extending to 150o scattering angle are shown indicating that large angle scatters were seen.

[image: image6.png]150°  180°

o

20°

&° 90°

k)

-

3G

© k=)

SAVY © 034ILIVOS

)
30 u3m

‘e Q
IWON 3AILYI3Y

MEAN ANGLE OF SCATTERING,&




Fig. 5.2:
Data taken by Rutherford on the scattering angular distribution for incident  particles on silver.  (From Ref. 3.6, with permission.)

5.3
Feynman Diagrams


It turns out that the same result obtains in quantum mechanics.  The “Feynman diagram” for Rutherford scattering is shown in Fig. 5.3.  The exchanged “virtual photon” is responsible for the deflection of the incident charge.  A word here on “Feynman diagrams” is in order.  We will use them here simply as a tool to make conclusions about the powers of ( (see Section 1) which the rate for a process contains, and occasionally to make dynamical inferences.  We recall that an isolated electron cannot emit a photon and still conserve energy and momentum (see Section 3).  The amplitude for that emission is proportional to the total charge e.  The uncertainty principle allows for emission of a “virtual” photon if subsequently that photon is reabsorbed by another charge in a time 

 which is consistent with a limited energy transfer 

, of size 

.  The amplitude for emission and absorption then goes as e2= , so that the rate goes as 2.  The amplitude also goes as 1/E in second order perturbation theory where E is the energy difference between initial and final unperturbed states.  The amplitude is large when E is small.  This in turn means that any “virtual” particle would like to be as “real” as possible which for photons means (E0), or as “soft” as possible.  This is the main dynamical inference.
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Fig. 5.3:
Feynman diagram for Rutherford scattering.


The scattering amplitude is, in the Born approximation, the matrix element of the interaction potential between the free, non-interacting, initial and final states, 

.  If we take those states to be plane waves, the scattering amplitude is the Fourier transform of the interaction potential, 
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.  The Fourier transform of a 1/r Coulomb interaction potential is, in momentum transfer space, proportional to 1/q2.  Therefore, another way to look at the dynamics shown in Fig. 5.3 is first to recall that 
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.  The square of the amplitude, A ~ 1/q2, which is proportional to the cross section, 

, then goes like 

 since q ~ p which agrees with our classical “derivation” of Rutherford scattering.  The virtual photon “wants” to be as real as possible, so that A(q) is large when q is small.






(5.5)

5.4
Relativistic Considerations


The transverse electric field at a given impact parameter due to the relativistic field transformation increases as 

, see Table 3.1.  However, the collision time decreases. For uniform linear incident motion, the time dilation factor, (, means that the laboratory collision time t goes as 

.  Therefore, the net impulse in transverse momentum, 

, is constant which means that the energy transfer is constant.  This constancy of the energy transfer has very large implications for detectors.  The energy loss, which we'll be examining in the next Section, is effectively constant, up to logarithmic factors, over a wide variety of energies.  One implication for detectors is that all singly charged particles of sufficient kinetic energy transfer the same energy to the detecting medium.  Clearly, this uniformity of energy deposit makes particle detection simpler.
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We will return to the residual relativistic effects in Section 6.

5.5
Multiple Scattering


Recall that Rutherford scattering is due to the field of the nucleus. Gauss's law tells us that when a particle is incident outside the volume of the atom there is screening of the electric field of the nucleus by the intervening charges of the electrons.  The net charge is zero which means that there is a minimum scattering angle min (maximum impact parameter) when b is roughly equal to the first Bohr radius, ao.  





(5.7)


Therefore, the differential cross section integrated over all angles does not diverge due to the 

 behavior because there exists a minimum angle cut off.  We observe a total elastic cross section equal to the geometric cross section which we discussed in Section 1.  Looking back at Eq. 5.3 it is intuitively clear that we will recover the geometric cross section because for every impact parameter less than the atomic radius there is a non-zero scatter.  The integral of d( = 

, where b ranges from 0 to the Bohr radius, is just the geometric cross section.  
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Since we have know the distribution of scattering angles, the mean scattering angle in a single collision is calculable.  The mean angle is defined to be the scattering angle weighted by the angular distribution. (See Appendix J, where the distribution function is d/d(.)
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Because Rutherford scattering is weighted so strongly towards the minimum scattering angle (maximum impact parameter), up to logarithmic factors, 

 is equal to twice the square of the minimum scattering angle.  


If we now consider the passage of a charged particle through a thick block of material there are N scatters on average in that material. The scattering angle compounds as a random stochastic process, with a mean given by the central limit theorem.  The mean square multiple scattering angle 

 for N scatters is N times the mean square angle for a single scatter 

 (see Appendix J). 





(5.10)


The number of scatters is given by the distance traveled divided by the mean free path between single scatterings.  Inserting the expression for the mean square of the scattering angle from Eq. 5.9, Eq. 5.7 and the Rutherford scattering cross section from Eq. 5.8 we obtain the mean of the square of the angle for multiple Coulomb scatterings.  





(5.11)

5.6
The Radiation Length


The factor of 

 from Eq. 5.9 and the factor 

 from 
[image: image13.wmf]s

 cancel out, so that we are left with a simple expression up to logarithms.  It is traditional to use X0 units (see Section 10) in expressions for the multiple scattering angle.  However, it should always be kept in mind that this is not a radiative process.  It is fortuitous that radiation length units are applicable but it is, in fact, misleading.  The radiation length is derived in Section 10 and numerical values are provided in Table 1.2.
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A characteristic energy, ES, is defined, 21 MeV, which is related to the electron mass and the electromagnetic coupling constant (.  In these units 

 is proportional to the path length in radiation length units, 
which we will define to be the variable t.  Since this is a stochastic or random walk process, the multiple scattering angle is proportional the square root of the path length. 
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A convenient way to think of the physics is to assign a multiple scattering transverse momentum impulse, 

.  Any incident singly charged particle suffers this same average impulse when going through a block of material and being scattered by the nuclei of the material. The transverse energy scale is set by the target physics.  






(5.14)

For example, in traversing one radiation length of material, a 20 GeV pion will suffer a mean scattering by angle, 

 ~ 0.001, or 1 mrad., 

.

5.7
Small Angle, Three Dimensional Multiple Scattering


Let us quickly mention the actual statistical distribution of the quantities involved in multiple scattering.  For small deflections the distributions in the two directions perpendicular to the direction of motion are independent, basically since 
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 is distributed with a Gaussian dependence.  Since the location of the particle and its momentum vector in a plane requires 2 variables, a total of 4 are needed to specify the 3 dimensional problem.  A possible choice for the y coordinate is shown in Fig. 5.4.  Note that 

 is normally distributed with RMS = 
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  (See Appendix J.)
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Fig. 5.4:
Definition of multiple scattering quantities in a plane.  The exit position, y, and exit angle, 

, upon traversing a depth t in 

 units is shown.
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It is interesting to note that we can find uncorrelated variables.  We assert that 

 and 

 are uncorrelated.  This can be established by diagonalizing the matrix, 

, and finding the eigenvectors and is left as an exercise to the reader.  The diagonalized matrix is 

.
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The physical reason for the decoupling of 

 and 

 is that the coupling comes about because large scattering angles, 

, necessarily mean large deflections, y.  The variable 

 removes this effect by subtracting from y the deflection due to scattering by an angle 

 at the center of the material.  Note that the error about the mean is then reduced by a factor 2 

.  These error matrices are very useful in making mathematical models for particles moving in the presence of scattering material.  Such topics are, however, beyond the scope of this book.  (See Appendix K for a first taste.)

5.8
Maximum Momentum Transfer

Looking at Eq. 5.1 it's clear why so far we’ve been considering scattering off the nucleus.  The factor Z and the point-like nature of the nucleus make it important for angular deflections.  What we wish to do now is to consider not the angular deflection of the projectile but the energy loss which it suffers in transferring energy to the target.  The kinematic definitions for the energy transfer are given in Fig. 5.5 where an incident particle of defined momentum, energy and mass,
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Fig. 5.5:

Kinematic definitions for scattering of a particle of mass M off a target of mass m which recoils with angle  with respect to the projectile direction.

(po, o and M) scatters off a target particle of mass m which recoils with angle 

 and momentum 
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.  We label the projectile scattering angle by 

 as before. The collision kinematics is dictated, as usual, by the conservation of energy and momentum. 
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We define the kinetic energy, T, of the target in the final state by subtracting the rest mass from the recoil energy, e.  We can, with considerable tedious algebra, extract an expression for Q as a function of the recoil scattering angle, 

.  (See Appendix A.)





(5.18)


The maximum value of the energy transfer to the target, Qmax, comes at zero degree recoil angle when the target is boosted straight ahead. The minimum value, Q = 0, looking at Eq. 5.19, clearly comes at 90o recoil angle when we have a “grazing” collision.  A bubble chamber photograph, in which the trajectories are enhanced, showing an elastic scatter where the target recoils at effectively 90o is shown in Fig. 5.6.  [As an aside, we will not further discuss the “bubble chamber” since it is no longer an active research tool. Suffice it to say that the ionization released by a charged particle heats the bubble chamber liquid, e.g. liquid hydrogen, which then locally boils. The small bubbles are illuminated and then photographed.] The dynamics in this case also limit recoils to small momentum transfer, just as Rutherford scattering peaks at small q.  Therefore, the projectile has a small deflection in these grazing collisions while the target recoils with low velocity at wide angles, Q ~ 0.  
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Fig. 5.6:
Bubble chamber photograph (enhanced) showing an elastic scattering with recoiling target at an angle  ~ 90o.  (From Ref. 2.11, with permission.)






(5.19)


The maximum energy transfer Qmax simplifies if (m/M0.  In that case, the scaled maximum energy transfer, Qmax, is just twice the momentum of the projectile divided by its mass squared.  The ratio of recoil energy to the maximum possible, Qmax, is approximately the square of the cosine of the recoil angle, 

  


For elastic scattering at fixed incident energy there is only one free variable which can be taken either to be the scattering angle or the impact parameter or the recoil momentum.  It is clear from Eq. 5.19 that there is a functional relationship between the recoil energy and the scattering angle.   In Fig. 5.7 we show, for example, the scattered energy and angle and the recoil energy and angle, all as a function of the C.M. scattering angle for 

 elastic scattering with incident 1 MeV photons.  For grazing collisions, cos* ~ 1, T ~ 1 MeV,  ~ 0o and Te ~ 0 MeV 
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Fig. 5.7:
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5.9
Energy Transfer


In Eq. 5.2 we've already derived the momentum transfer in an elastic collision.  Looking now at the energy transfer, and assuming non-relativistic recoil, we conclude that it is the light targets to which it is easy to transfer energy.
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Because of the existence of the factor 1/m in the expression for the recoil energy, 

, light particles are the ones to which energy can be transferred.  This is quite familiar in every day life.  If you throw a Ping-Pong ball at another Ping-Pong ball there can be a large energy transfer.  If you throw a Ping-Pong ball at a Mack truck, the truck will not recoil and the incident ball will retain its full initial energy.  Therefore, we expect that incident charged particles will preferentially transfer energy to the atomic electrons, which are ~2000 times lighter than protons.  The electrons will not, however, be involved in large angle scatterings, as we said, because large scattering angles come from interactions with a localized charge. 

5.10
Delta Rays


We expect that occasionally the recoil electrons will gain enough energy to be removed from their bound state and be kicked into the ionization continuum (see Section 1).  For historical reasons these freed electrons are called delta rays.  An example of delta rays being ejected by a charged particle traversing material is seen in Fig. 6.6 in the next Section and in Fig. 5.6 of this Section.  They are seen to recoil at large angles and at low energies. Instead of impact parameter b, we choose the kinetic energy of the recoil, T, to relabel the scattering process. The relationship of T (b) = 
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 in Eq. 5.20 is used.
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The characteristic 

 projectile angular behavior translates into a 1/T2 recoil energy behavior. The projectile scattering angles are dynamically constrained to be small by the

 factor and similarly the recoil energies are constrained to be small by the 1/T2 factor.


We now convert the cross section to the mean free path for ( ejection.  There are Z atomic electrons which are incoherently added.  The source is spread over a size ~ 

, and the wavelength of the projectile is assumed to be less than that.  Hence there is no phase coherence over the size of source as there is, for example, in Bremsstrahlung in the Coulomb field of the nucleus (Section 10).  The 1/T2 divergence is still just a mathematical artifact as there is a cut off at the maximum impact parameter, b ~ ao.  For fast incident particles, 

.
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Numerically the factor 
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 is 0.078/(MeV 
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.gm/cm2 ) , if  Z/A is ~1/2.  If we express the minimum recoil kinetic energy in MeV, the number of collisions giving a recoil electron greater than 1 MeV in gm/cm2 units is approximately 7.8%. The number goes with the cut off energy To as 1/To.  






(5.23)

These “delta rays”, which we will see in examining bubble chamber pictures later (see Section 6), confuse the measurement of points along the trajectory of the particle.  We will also see later that they are responsible for some of the irreducible fluctuations in the energy deposited by an incident charged particle in traversing a detecting medium. 

5.11
Other Force Laws


It is amusing to explore the relationship between other force laws and the scattering angular distribution.  Suppose the power law were different.  How would that change the 

 behavior (Eq. 5.4)?  Suppose the force law is not  F(b) = Ze2/b2, but rather;






(5.24)

Assuming that the time interval is unchanged, the relationship between scattering angle and impact parameter is





 ~ U (b)/T
(5.25)

Using Eq. 5.3, we find the generalized scattering angular distribution to be:






(5.26)

Using Eq. 5.25 to eliminate b in favor of (
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(5.27)

For N = 2 we recover 

 with 

.  Note that more localized forces, e.g. N = 3, give more localized impact parameters or more isotropic angular distributions.  For N = 3, 

 goes as 

.
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