9.  Si Detectors

“All composite things decay, strive diligently.”....Buddha Gauthama

“To see the world in a grain of sand.”....William Blake


The gas detectors which we discussed in Section 8 are intrinsically limited due to diffusion, where the limit on the localization of the drifting ionization is of order 100

 for drift distances ~ 1 cm.  For the study of heavy quark decays, (see Section 13), the characteristic decay length ranges from 100

 to 400

.  The length scale is set by  

 ,the lifetime of the particle in its rest frame. Therefore, 

 is the decay length. Hence, if we want to resolve the production vertex (Fig. I.1) as separated from the subsequent  quark decay vertices, we need a detection element with better spatial resolution than the proportional wire chamber.  (See the discussion of “Vertex Detectors” in Section 13.)

9.1
Impact Parameter and Secondary Vertex


 A bubble chamber photograph of the production of a pair of charmed mesons by an incident photon is shown in Fig. 9.1.  Note that the laboratory decay lengths are time dilated by a factor 

 and are of order 1000

 or 1 mm.  If we draw the daughter momentum vectors back to the production vertex we can see that the impact parameter, or the transverse distance between the path of the decay particles and the production point are of the same order as the lifetime, 

.  Note that the bubble chamber technique, although it contains an enormous amount of information per event, is much too slow a technology to use in the study of the relatively rare production of heavy quarks. It has, in fact, not been discussed in this text.  It can, in principle however, resolve the production and decay vertices as illustrated in Fig. 9.1.  
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Fig. 9.1:
Bubble chamber event showing pair production and subsequent decay of charmed D mesons.  Note that the decay lengths are ~1000 m = 1mm.  (From Ref. 10, with permission.)


Silicon detectors are now the high rate devices of choice in the study of heavy quarks at both fixed target and colliding beam machines.  Let's consider the resolution which is required of such a detector. A particle which is produced and subsequently decays into a secondary track which has an impact parameter b is shown in Fig. 9.2.  The distance along the track is increased by a factor of 

 over the intrinsic “lifetime” 

.  The impact parameter is proportional to that distance, D, and the angle 

 which the decaying track makes with respect to the heavy quark parent.  


[image: image2.wmf]b

r

z

D

a

q

z

D


Fig. 9.2:
Geometry of a short-lived particle D decaying into a secondary track a with impact parameter b.
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(9.1)


The decay angle 

 is approximately the transverse momentum divided by the longitudinal momentum.  (See Appendix A.)
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(9.2)

For two body decays the transverse momentum impulse is again set by the physics (see Appendix A).  The intrinsic physics in this case is fixed by the mass of the parent quark, MD, decaying into daughters, which are here, assumed to be essentially massless. The longitudinal component is set by the sharing of the momentum,  pD , of the heavy quark parent by the two daughters.   
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(9.3)

Therefore the impact parameter b is of the same order of magnitude as the lifetime, (c

D), independent of the  factor of the heavy quark. 
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Therefore, the required resolution of the detector, ignoring multiple scattering, does not depend on the momentum of the heavy quark.  Multiple scattering considerations (see Section 5) would bias us towards studying higher momentum quarks.  The detector should have a resolution << 

 or ~ (10-50) 

.


Typical values for the “pitch”, P, or the spacing of electrode strips which collect the signals in Si detectors are in the range 20-100

, which satisfies this criterion.  Assuming uniform illumination, if only which strip is hit is recorded, the resolution is the pitch, P, divided by 

.  (See Appendix J.) 
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If the charge on the strips is recorded, we may do better (see Section 8 on cathode strip charge measurements).  For pitch P = 50m, the resolution, P/

, is 15 m.  A basic limitation is again set by diffusion.  With a drift voltage of 50 Volts and a drift distance of 300 

 (these values will be justified later in this Section), we find 

 for the diffusion error, (see Section 8).


As an aside, not all measurements are resolution limited. Consider the measurement of heavy quark decay with lifetime 

.  If the decay time t is measured with an error 

, the probability to observe time 

 is 

 ~ 

 where 
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, (see Appendix J).  The shape of 

 has the same time structure with the same lifetime, 

, but the overall rate at the same time value t( as t is increased by a factor exp

.  Therefore, Gaussian measurement errors of the decay time do not change the shape of the decay distribution, at least for 

. The proof of this is left to the reader.
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9.2
Band Gap, Intrinsic Semiconductors and Ionization


The band gap, Eg, is defined to be the minimum energy needed to excite an electron into the conduction band.  In silicon it has a value of 1.12 eV.  In a solid the sharp atomic energy levels are smeared into “bands” by the mutual interactions among the electrons (see Section 2).  In a semiconductor such as silicon the “valence band” is full, and it is separated from the allowed states in the empty “conduction band” by a “band gap” Eg.  This gap can be thought of as a residue of the sharp energy difference between atomic states.


The intrinsic conductivity, 

 of pure silicon is due to the thermal excitation of charge carriers across the gap, Eg, into the conduction band.   The intrinsic carrier density, ni = 

, at room temperature is about 1011/cm3 (see Ref. 9.1).  The ni refers to negative electrons in the conduction band while pi refers to the mobile “holes” remaining in the valence band.  Note that this carrier density is rather small in that the full electron density is 

.  The small value of the ratio is due to the fact that Eg/kT ~ 40, so the Boltzmann factor, 

 is very small, ~ 4x10-18. Therefore, silicon has relatively few mobile charge carriers and is a poor conductor.

The intrinsic resistivity, 

, is the reciprocal of the intrinsic conductivity, 

. A high conductivity metal such as copper has a resistivity of ~10-6 

 which is about 1011 times less than pure silicon, reflecting ni/nsi.  In a metal there are allowed unfilled states in the valence band so that the valence electrons can participate in conduction without paying a big penalty due to a small Boltzmann factor.  


The conductivity of semiconductor material is controlled by “doping” the crystals with small levels of impurities.  Typical doping levels are chosen, (e.g. parts per million), such that the doped conductivity of the majority carriers, (set by impurity levels) is >100 times the intrinsic conductivity while that for the minority carriers is consequently <100 times less since the product ni pi = np remains constant under doping.  For example, n ~ 1013/cm3 and p ~ 109/cm3 for a lightly doped n type semiconductor.  Thus doping with parts per million impurities will dominate the intrinsic charge carriers while still keeping the resistivity high with respect to good conductors.  The unit of charge, the electron charge, is taken to be q in this Section to avoid confusion with the exponential function.  The carrier mobility is 
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When we consider the detection of ionization energy, the energy needed to create an electron-hole pair in Si is 3.6 eV.   That’s greater than the band gap energy Eg because of the existence of competing dissipative processes such as phonon, or lattice vibration, excitation.  The silicon detector acts as a “unity gain” ionization detector operating similarly to those discussed in Section 8.  In a detector of active depth 300

, the energy loss in silicon due to ionization is about 116 keV which liberates a source charge, qs, of 5.1 fC.  
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Silicon detectors are “unity gain” devices.  Compared to gas filled detectors the yield per unit length of ionization is increased by the density ratio and the ionization energy ratio, Io/Eg  for a total factor of ~ 10,000.  This factor approximately offsets the “gas gain”, G, available in PWC devices.  The drift time and diffusion width both depend on the drift distance, d, which means that we expect Si devices to be fast and capable of precise position measurements (d ~ 300 m).

9.3
The Si Diode Fields 


The charge quoted in Eq. 9.8 is a rather small signal charge, and consequently it is fairly difficult to detect. The idea is to set up a situation where the other currents are small, so that the ionization current pulse can be detected.  Consider a p-n junction diode consisting of silicon doped with p type impurities on one side and n type impurities on the other. The dielectric constant for silicon is 

 ~ 1 pF/cm (recall 

 = 0.089 pF/cm and 

 ~ 11.9 

, Table 1.1).  The current, I, voltage, V, relationship for a p-n junction is given below. 





(9.9)


Here 

 represents the thermal “reverse” current due to the thermal excitation of the minority carriers in reverse biased operation, V< 0.  The relevant scales are the applied energy qV with respect to the thermal energy kT.  If 

 and 

 then 

 and we have a small reverse current.  If 

, then 

and we have large forward currents.  The diode acts as a “switch” with “position - on/off” controlled by V.


The forward biased resistance, RF, is estimated using a differential form of Ohm's law which gives us a 25  resistance for a forward biased diode at room temperature with a 1 mA standing current.  Fluctuations in the forward current (shot noise is discussed later in this Section) would swamp the ionization signal.  Therefore, we need to operate the diode as a reversed biased p-n junction.   As we will see, the reverse current at room temperature is ~ 10 nA. 


A schematic of the location of the charge carriers in reverse mode is shown in Fig. 9.3 where the n type and p type are shown with an applied voltage V< 0 leading to a “depletion” region centered on the junction.  The applied voltage sweeps the mobile charge carriers out of the junction region leaving a uniform ion number density n.  As the applied voltage is increased, the mobile charge carriers are swept further out of the junction region leaving the fixed ion charge which is positive for the n type region and negative for the p type region.  
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Fig. 9.3:
Schematic of a reverse biased p-n semiconductor diode showing the depletion region.  (From Ref. 11, with permission.)


For an applied reverse potential VD, the geometry at “full depletion”, where all the mobile charge carriers are just swept out, is shown in Fig. 9.4a.  We have assumed a very thin n side of the junction diode.  The number density of doping impurities is nA on the p side and nD on the n side.  Charge conservation requires that the n type is highly doped as it is thin.
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This static situation can be treated using Maxwell’s equations.  The electric field vanishes at x = A and x = -D.
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In Eq. 9.11  is the charge density and not the resistivity and n is the ion number density. The charge in the depletion region is assumed to be static and uniformly distributed.  Thus, the electric field is linear in x.  






(9.12)

The slope discontinuity in E is due to the discontinuity of charge at the junction seen in Fig. 9.4a.  We integrate a second time to get the potential applying the boundary conditions V(x = A) = -VD, V(x = -D) = 0.
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Note that we have ignored the “built in potential” due to thermal excitation of the charge carriers.  It is Vbi ~ kT/q = 25 mV @ 300oC (Eq. 9.9) times a factor of order one, ln (n/ni).  For a heavy doping, 106 times the intrinsic level, we have a ~ 0.36 V drop due to thermal excitation.   Compared to a depletion voltage, ~ 50 V, this “diode drop”  is negligible.
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Fig. 9.4:
a) Geometry of a p-n junction.  The static charge number density is nD and nA.  The full depletion region is d = A +D ~A.  b)  Electric field for a p-n junction.  c)  Electric potential for a p-n junction.


A plot of V(x) is provided in Fig. 9.4c.  Note that V and its’ slope, E ,  are continuous across the x = 0 junction.  Let us make a simplifying assumption.  Continuity of V(x<0) and V(x>0) at x = 0 requires that VD = q nA A(A+D)/2C.  If the doping levels are much different, nD >> nA then, A >> D.  In that case, d  A+D A and






(9.14)


The n layer, in this approximation, is very thin. Defining nA = p for simplicity, we find that E(x) ~ -q p(x-d)/C, V(x) ~ -VD + qp(x-d)2/2C.  The relationship of the applied voltage and the depletion thickness, is:
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For example, a 300

 depletion region, d, with a doped resistivity of 

 = 6 kcm has a depletion voltage VD of 51 V and a capacity per unit area, C/d of 35 pF/cm2.  Note that in comparison with the intrinsic values there are ~30 times more majority charge carriers in this example, so that the doping is fairly light.  A detector of area 25 mm2 has a source capacity, Cs, of ~ 8 pF.

9.4
The Si Diode; Signal Formation at Depletion


A plot of data taken with a silicon strip detector, Fig. 9.5, shows the coincidence rate of a Si strip, S1, with an exterior scintillator array of multiple counters or “telescope”, T, triggered on minimum ionizing particles as a function of the applied voltage.  It's clear that as the voltage increases the coincidence rate rises because the depleted region is expanding rapidly and more charge is being collected, VD ~ d2.  At a fixed detection threshold, VT, more charge means higher efficiency.  The amount of charge rises until a voltage is reached where the detector is “fully depleted”.  In that case the efficiency comes to a “plateau” without further increase. This occurs at ~50V applied voltage as estimated from Eq. 9.15.
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Fig. 9.5:
Data taken with a 50 m pitch Si microstrip plane on the coincidence ratio of strip S1 with external telescope T as a function of applied voltage V.


In Fig. 9.6 is shown a photograph of a real detector used in an experiment,  50

 pitch Si detector mounted as a planar detector for a “fixed target” geometry.  Note that transverse diffusion and 

 ray emission limit the “pitch” size.  In Fig. 9.7 the silicon detectors are mounted as azimuthal coordinate detectors in a cylindrical geometry more appropriate to the solenoidal field used by colliding beam detectors.  (See Section 13.) 
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Fig. 9.6:
Photograph of a 50 m strip spacing Si detector mounted as a planar detector.  Note the “fanout” of silicon strips to high density connectors which accommodate the electronics.  (Photo - Fermilab.)


What about the time for pulse formation?  First we find the electric field as a function of depth just at depletion, 

. For 
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Fig. 9.7:
Photograph of a Si detector mounted as an azimuthal coordinate detector in a cylindrical geometry.  (Photo - Fermilab.)


We use the methods developed in Section 8 to find the charge position as a function of time.  For the special case of point ionization created at x = 0 at t = 0 (see Fig. 9.4b) the charge will reach 

.
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See Appendix H for more general results and more details. Note that (D     = C( so that high speed operation favors low resistivity, highly doped Si while a desire for low leakage currents favors high resistivity.


The current is found using the formalism developed in Section 8
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The characteristic charge collection time D  can be thought of as the charge going a distance d in a field E(0) with charge carriers having a mobility 

.
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With an electron mobility, 

e, of 1400 cm2/

, the drift velocity is of order 4.2 x 106 cm/sec or = 42 

m/nsec. This velocity should be compared to a gas where the electron drift velocity (see Fig. 8.2) is comparable, i.e. a few cm/sec.   However, the drift distances are much smaller so that the charge collection time is shorter for Si devices. For a drift distance of 300 

 we get D ~ 7 nsec.  The holes have a mobility ~3 times less and therefore the hole signal is about 3 times slower.  


Note that D was derived just at depletion.  Clearly if we can raise the applied voltage it will drive the electric field into the diode and reduce the collection time.  (See Appendix H).  A limitation to this method of speeding up the detector comes because there exists a reverse breakdown voltage. Normally, we do not operate far above depletion 
[image: image25.wmf]V

100

V

£
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A plot of the coincidence rate between a Si strip S1 and a scintillation counter “telescope”, T, as a function of the relative delay between them is shown in Fig. 9.8.  The basic falloff time is ~ 12 nsec. From Section 2, a coincidence rate will persist on a time scale equal to the intrinsic “time jitter” of the device.   One component of that time jitter is the resolving time of the Si detector.  Clearly, the Si strip is experimentally confirmed to be a high-speed detector.
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Fig. 9.8:
Plot of coincidence rate between a Si strip S1 and an external scintillation counter T array as a function of the time delay inserted in the coincidence logic.


Recalling that the source charge (qs) is 5 fC, we find a peak electron (hole) current 710 nA (240 nA). 
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Having established the size of the current signal, let us turn to issues of noise.

9.5
Noise Sources - Thermal and Shot Noise


Typical reverse currents for junctions as a function of temperature are shown in Fig. 9.9.  Note the exponential relationship between the operating temperature and the reverse leakage current, Io.  Since this current is due to the thermal excitation of minority carriers, such behavior is not unexpected.  The scale for reverse currents at room temperature for the lowest leakage junctions is 2-20 nA.  Therefore the signal to noise ratio in such detectors is adequate if high quality high resistivity detectors are used (see Eq. 9.7, high resistivity means small intrinsic current).  Note that “bulk damage” of the crystal lattice, say from irradiation due to detector operation at a high luminosity accelerator, induces defects which act as carriers, thus increasing the reverse current.  For example, a neutron “fluence” of ~1014 n/cm2 may cause discernible degradation in performance. Looking at Fig. 9.9, cooling the Si devices is an option to restore low noise operation, and indeed, solid state detectors are routinely run at low temperature in many applications.
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Fig. 9.9: 
Reverse leakage current as a function of temperature.  (From Ref. 12, with permission.)


Now let's consider briefly methods of detection for these small pulses.  It is the smallness of the signal compared to a PWC which dictates a less cavalier treatment of front end electronics in this case.  A schematic of an operational amplifier realization of a charge integrator is shown in Fig. 9.10 (see Appendix I).  The ionization detectors we have discussed are all a capacitive source of charge; the signal can be thought of as a current source.  Using Q = CV, I = CdV/dt, we find that the output voltage Vo is proportional to the source charge qs.  If the amplifier gain G is >> Cs/C then the device acts as an ideal operational amplifier (G((), Vo = qs/C. A typical output pulse of such a device is seen in Fig. 8.4.  A more detailed schematic showing the noise sources, en, for a signal with source charge qs, driven by source capacity Cs and source resistance Rs into a generic amplifier with gain G and output filter with “transfer function” 

 is shown in Fig. 9.11.
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Fig. 9.10:  Charge sensitive preamplifier.


Let us now look in more detail at the behavior of the noise sources.  There are dissipative elements such as resistors which are a source of intrinsic “thermal noise”.   The size of the thermal currents is set by the thermal energy, kT, in the resistor.  We assume that the frequency spectrum of this noise is “white”; it is uniform over all frequencies.  That means, physically, that the noise occurs impulsively, or as a delta function, in time.  [Recall that the Fourier transform of a plane wave with fixed momentum, 

, is eikx whose intensity is spatially uniform.]  
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Fig. 9.11:
Amplifier and bandwidth limiting filter, f() with source capacity, CS, source resistance, RS, source charge, qS, and input noise voltage, en.


The noise power in a resistor is the thermal energy kT spread uniformly over all frequencies, 

.  This thermal noise power leads to a thermal resistor current IT, since power = P = VI = I2R. 
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Additionally there is “shot noise” which occurs because standing currents, I, are in fact  due to the motion of discrete charge carriers since charge is quantized in multiples of q. Fluctuations in the numbers of these charge carriers lead to the “shot noise” of the standing current, 

.  If charge were not quantized, q ( 0 and dIs ( 0.
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We need a filter to limit the bandwidth.  Otherwise we will have an infinite amount of noise since all frequencies are hypothesized to be equally probable.  We assume a simple shaping network which cuts off linearly at low frequencies and falls as 

 at high frequencies with a single “shaping time”, .  A schematic plot of  G

 as a function of 

 is given in Fig. 9.12.
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Fig. 9.12:
Plot of the transfer function  Gf() which  0 as   0 and as    and peaks at  = 1/.
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We define the transconductance, gm, to be the inverse of the base resistance of a hypothetical front end transistor in the amplifier.   We assume a front end transistor with a base resistance characteristic of a forward biased diode.  The relationship between standing emitter current IE and base resistance RB is one we have already seen in Eq. 9.9.
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To set the scale for these quantities, we evaluate the coefficients numerically (at room temperature);






(9.24)

Clearly we are dealing with nA scale noise currents per unit frequency range. For example, with a 100 MHz frequency range, d(, at 1 mA standing current, we have 126 nA shot noise - a level which becomes uncomfortably close to the signal level, Eq. 9.19.


We assume three sources of noise, (Fig. 9.11); the thermal noise in the source resistor RS, shot noise due to the standing front end emitter current IE, (amplifier) and thermal noise in the base resistor RB.  These noise currents flow into the source capacity, CS, and by assumption not into source resistance, RS, because the source resistance is assumed to be much greater than the impedance, ~ 1/( CS of the source capacitor at the relevant peaking frequencies, 

.  Note that I = CdV/dt = C

V means that the capacitor impedence ZC is equal to = V/I = 1/

C.  


These assumptions lead to an expression for the total square summed input noise voltage 

.  Since the noise sources are statistically independent we add them in quadrature (see Appendix J).  The first 2 terms go as 

 while the last goes as 

 The source capacity is important at low frequencies.






(9.25)

9.6
Filtering and the “Equivalent Noise Charge”


The noise voltages are referred to the amplifier input.  They go through the amplifier and through the output low and high pass filter network, f(

), to produce a mean square voltage at the output terminals, 

. 





(9.26)


Note that without the shaping network this integral would diverge.  The noise going into CS diverges at low frequencies because the CS impedence diverges at low frequencies.  In comparison, the base thermal noise needs to be cut off at high frequencies.  Thus 

 has terms that goes as 

 and as 1/

. 


 For the signal charge itself, qs, there is an optimized output from the filter if the frequency distribution of the source is well matched to the shaping time 

 of the filter.






(9.27)

In Eq. 9.27 and below e is the base of the natural log not the electronic charge which we have defined to be q in this Section in order to avoid confusion.


The behavior of the signal allows us to define an equivalent noise charge, ENC, referred to the input, since qs appears on CS.  






(9.28)


The ENC is the noise charge that occurs due to the noise sources referred to the input with respect to the output signal that arises for optimal shaping, V ~ (qs G/CSe) ~ G Vs/e.  It is convenient to further define “parallel” and “series” equivalent noise charges. Those  noise charges  are proportional to the square root of the shaping time 

 (parallel) and 1/( (series).






(9.29)


Clearly, for low noise operation we want low temperature, large source resistance (ideal current source) and small standing base current in order to minimize the parallel noise.  Similarly, we try to obtain small source capacity and small base resistance to reduce series noise.  In addition, high-speed operation argues for short shaping times, 

, but a compromise with enhanced series noise may be required, ENCS ~ 1/

.  Short shaping time implies a large bandwidth, 

 which inevitably puts more noise into the system.  We should then, if possible, operate at reduced temperature because thermal noise in the resistors is reduced (see Eq. 9.29).  


 A plot of the noise as a function of source capacity for typical preamplifier parameters is shown in Fig. 9.13.  You can see the existence of a “parallel” part of the equivalent noise which is independent of source capacity and a “series” part which becomes important at large source capacity and which increases linearly as Cs.  Clearly, we try to minimize the capacitance of the source because it causes noise.  For example, long Si strips are economically desirable, but we may incur too high a penalty due to increased source capacity if high speed (small 

) operation is planned.  
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Fig. 9.13:
Noise in RMS electrons referred to the input as a function of source capacitance for typical preamplifier parameters. The linear dependence for series noise dominance is evident for >100 pF capacity.  (From Ref. 12, with permission.)

9.7
Front End Transistor Noise


So far we have neglected the transistor as an active element and as a noise source. For front-end transistors, the equivalent noise voltage referred to the input, 

 (see Fig. 9.11), is often quoted in the manufacturer’s specification. For a typical transistor, 

, and a series noise charge can be defined.  






(9.30)


As an example,  a source capacity 

 = 25 pF using a 25 nsec shaping time 

, yields a front end transistor noise of 1000 electrons, to be compared to a Si signal of 31,000 electrons.


The plot of the ENC in rms electrons for various types of front-end transistors is shown as a function of shaping time in Fig. 9.14 for a 10 pF source capacity CS.  For short shaping times the expected 

 behavior is observed.  At the point, 

 ~ 10 nsec, we find ENC ~ 800 e or en ~ 1.3 

 for bipolar transistors.  For high speed applications bipolar transistors are favored (GaAs if money is no object), while for slower operation junction FETs are the best choice.  Clearly, the devil is in the details. 
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Fig. 9.14:
Equivalent noise charge in RMS electrons as a function of shaping time  for a 10 pF source capacity and a variety of front end transistors.  (From Ref. 13, with permission.)


Can transistors improve dramatically? Well, it is often remarked upon that the speed of computer chips doubles every ~ year and this is quoted as a “rule”.  However, all rules only work in limited regions of the parameters. The speed of a transistor is determined by the “feature size”. That size is currently ~ 1 (m or ~ 10000 atoms. If the trend toward shrinking feature size were to continue for 7 years, the size would go to 0.01 (m or 100 atoms. At that size quantum effects are crucial and the extrapolation collapses.

9.8
Total Noise Charge


As a numerical example, assume a source charge of 5.1 fC which is appropriate to a silicon detector.  Use a transconductance, gm, of (25

)-1.  Pick a source capacity of 30 pF which is not unreasonable for the leads and connections of a typical silicon strip detector.  Use a 10 nsec shaping time,  which given the intrinsic speed of the silicon detector, would be a match to D and would not compromise the Si  high rate performance.  


We find a series noise charge of 1125 electrons with this source capacity.   For a source resistance of 1 

 and a base current of 1 mA the parallel equivalent noise charge is 825 electrons, which means a total signal to noise, folding the series and parallel noise in quadrature, of 23.  That value of S/N is typical of those achieved in high quality silicon systems.  Clearly, the S/N value must be made to be >>1 if we are to operate efficiently and simultaneously run with low accidental counting rates, (see Section 2).
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These noise considerations are not simply an academic exercise.  They are symbols for what appears on your scope trace.  For example, the noise due to source capacity, CS, is evident in Fig. 8.4.  In Fig. 9.15 are shown oscilloscope traces in the case of a wire chamber.  We see the raw pulses which have a short rise time (5 nsec/division trace) due to the pulse formation time, o, which we evaluated to be a few nsec (Section 8).  The pulses have a long 1/t tail as we mentioned in Section 8 which can be electronically cancelled as shown in Fig. 9.15b and 9.15c.  We see that pulse shaping does indeed achieve a shorter pulse.  However, the “base line”, which is the signal to noise is becoming worse. The equivalent noise charge basically tells us what the level of “hash” is on the base line of our scope trace. It's that level of “hash” which defines the possible levels for pulse discrimination, VT (Section 2).  
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Fig. 9.15: 
Oscilloscope traces for a wire chamber.  a)  raw pulses, b) tail cancelled, c) pole/zero cancelled, d) impulse response.  Note that the width of the baseline is a direct measure of the ENC for the system.  (From Ref. 5, with permission.)


In Fig. 9.16 there is a photo of some Applications Specific Integrated Circuit chips, or “ASICs”, which are mounted directly on a detector. We can see that the level of technology which is used in such applications is rather high.  The electronics is mounted very close to the detector in order to minimize electromagnetic noise pickup as an additional noise source and also in order to minimize the source (leads) capacity.  We are constantly attempting to hold down the sources of noise. These tight requirements are an example of the fact that detector design is something of an artform.
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Fig. 9.16:  
Photograph of integrated electronics for detectors.  (Photo - Fermilab.)

9.9
Hybrid Si Devices


Recently “hybrid photodetectors” have become commercially available.  These devices combine aspects of photomultipliers and Si devices which open up new applications.  An example is the hybrid photodiode which has a photocathode in a vacuum vessel along with a Si diode.  The photocathode, held at ~10 kV, emits photoelectrons which are accelerated across a small gap, ~1 mm, in a short, < 1 nsec, transit time and strike the diode.  The released charge, G ~[(10,000)/3.6] = 2778 electrons per photoelectron, is collected rapidly by the diode.  Thus the device acts like a compact, fast photomultiplier tube with gain ~2800.  In addition, the device can work in magnetic fields up to 5T if the 

 and 

 axes are aligned, since then the path is a helix with axis along the 

 direction and with small radius of curvature (see Appendix G).  Finally, the Si diode can be cut into many independent devices, allowing for operation with multiple channels per device making for low cost per channel.  These devices are to be used in the next generation of high energy physics experiments.
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